1. ENERGY SCENARIO

Syllabus

Energy Scenario: Commercial and Non-Commercial Energy, Primary Energy Resources, Commercial Energy Production, Final Energy Consumption, Energy Needs of Growing Economy, Long Term Energy Scenario, Energy Pricing, Energy Sector Reforms, Energy and Environment: Air Pollution, Climate Change, Energy Security, Energy Conservation and its Importance, Energy Strategy for the Future, Energy Conservation Act-2001 and its Features.

1.1 Introduction

Energy is one of the major inputs for the economic development of any country. In the case of the developing countries, the energy sector assumes a critical importance in view of the everincreasing energy needs requiring huge investments to meet them.

Energy can be classified into several types based on the following criteria:

- Primary and Secondary energy
- Commercial and Non commercial energy
- Renewable and Non-Renewable energy

1.2 Primary and Secondary Energy

Primary energy sources are those that are either found or stored in nature. Common primary energy sources are coal, oil, natural gas, and biomass (such as wood). Other primary sources energy available include nuclear energy from radioactive substances, thermal energy stored in earth's interior, and potential energy due to earth's gravity. The major primary and secondary energy sources are shown in Figure 1.1

Primary energy sources are mostly converted in industrial utilities into secondary energy sources; for example coal, oil or gas converted into steam

Figure 1.1 Major Primary and Secondary Sources

and electricity. Primary energy can also be used directly. Some energy sources have non-energy uses, for example coal or natural gas can be used as a feedstock in fertiliser plants.

1.3 Commercial Energy and Non Commercial Energy

Commercial Energy

The energy sources that are available in the market for a definite price are known as commercial energy. By far the most important forms of commercial energy are electricity, coal and refined petroleum products. Commercial energy forms the basis of industrial, agricultural, transport and commercial development in the modern world. In the industrialized countries, commercialized fuels are predominant source not only for economic production, but also for many household tasks of general population.

Examples: Electricity, lignite, coal, oil, natural gas etc.

Non-Commercial Energy

The energy sources that are not available in the commercial market for a price are classified as non-commercial energy. Non-commercial energy sources include fuels such as firewood, cattle dung and agricultural wastes, which are traditionally gathered, and not bought at a price used especially in rural households. These are also called traditional fuels. Non-commercial energy is often ignored in energy accounting.

Example: Firewood, agro waste in rural areas; solar energy for water heating, electricity generation, for drying grain, fish and fruits; animal power for transport, threshing, lifting water for irrigation, crushing sugarcane; wind energy for lifting water and electricity generation.

1.4 Renewable and Non-Renewable Energy

Renewable energy is energy obtained from sources that are essentially inexhaustible. Examples of renewable resources include wind power, solar power, geothermal energy, tidal power and hydroelectric power (See Figure 1.2). The most important feature of renewable energy is that it can be harnessed without the release of harmful pollutants.

Non-renewable energy is the conventional fossil fuels such as coal, oil and gas, which are likely to deplete with time.

Figure 1.2 Renewable and Non-Renewable Energy

1.5 Global Primary Energy Reserves*

Coal

The proven global coal reserve was estimated to be 9,84,453 million tonnes by end of 2003. The USA had the largest share of the global reserve (25.4%) followed by Russia (15.9%), China (11.6%). India was 4^{th} in the list with 8.6%.

Oil

The global proven oil reserve was estimated to be 1147 billion barrels by the end of 2003. Saudi Arabia had the largest share of the reserve with almost 23%. (One barrel of oil is approximately 160 litres)

Gas

The global proven gas reserve was estimated to be 176 trillion cubic metres by the end of 2003. The Russian Federation had the largest share of the reserve with almost 27%.

(*Source: BP Statistical Review of World Energy, June 2004)

World oil and gas reserves are estimated at just 45 years and 65 years respectively. Coal is likely to last a little over 200 years

Global Primary Energy Consumption

The global primary energy consumption at the end of 2003 was equivalent to 9741 million tonnes of oil equivalent (Mtoe). The Figure 1.3 shows in what proportions the sources mentioned above contributed to this global figure.

Figure 1.3 Global Primary Energy Consumption

The primary energy consumption for few of the developed and developing countries are shown in Table 1.1. It may be seen that India's absolute primary energy consumption is only 1/29th of the world, 1/7th of USA, 1/1.6th time of Japan but 1.1, 1.3, 1.5 times that of Canada, France and U.K respectively.

TABLE 1.1 PRIMARY ENERGY CONSUMPTION BY FUEL, 2003						
	In N	Aillion tonnes of	il equivale	ent		
Country	Oil	Natural Gas	Coal	Nuclear Energy	Hydro electric	Total
USA	914.3	566.8	573.9	181.9	60.9	2297.8
Canada	96.4	78.7	31.0	16.8	68.6	291.4
France	94.2	39.4	12.4	99.8	14.8	260.6
Russian Federation	124.7	365.2	111.3	34.0	35.6	670.8
United Kingdom	76.8	85.7	39.1	20.1	1.3	223.2
China	275.2	29.5	799.7	9.8	64.0	1178.3
India	113.3	27.1	185.3	4.1	15.6	345.3
Japan	248.7	68.9	112.2	52.2	22.8	504.8
Malaysia	23.9	25.6	3.2	-	1.7	54.4
Pakistan	17.0	19.0	2.7	0.4	5.6	44.8
Singapore	34.1	4.8	-	-	-	38.9
TOTAL WORLD	3636.6	2331.9	2578.4	598.8	595.4	9741.1

Energy Distribution Between Developed and Developing Countries

Although 80 percent of the world's population lies in the developing countries (a fourfold population increase in the past 25 years), their energy consumption amounts to only 40 percent of the world total energy consumption. The high standards of living in the developed countries are attributable to highenergy consumption levels. Also, the rapid population growth in the developing countries has kept the per capita energy consumption low compared with that of highly indus-

Figure 1.4: Energy Distribution Between D eveloped and Developing Countries

trialized developed countries. The world average energy consumption per person is equivalent to 2.2 tonnes of coal. In industrialized countries, people use four to five times more than the world average, and nine times more than the average for the developing countries. An American uses 32 times more commercial energy than an Indian.

1.6 Indian Energy Scenario

Coal dominates the energy mix in India, contributing to 55% of the total primary energy production. Over the years, there has been a marked increase in the share of natural gas in primary energy production from 10% in 1994 to 13% in 1999. There has been a decline in the share of oil in primary energy production from 20% to 17% during the same period.

Energy Supply

Coal Supply

India has huge coal reserves, at least 84,396 million tonnes of proven recoverable reserves (at the end of 2003). This amounts to almost 8.6% of the world reserves and it may last for about 230 years at the current Reserve to Production (R/P) ratio. In contrast, the world's proven coal reserves are expected to last only for 192 years at the current R/P ratio.

Reserves/Production (**R**/**P**) **ratio**- If the reserves remaining at the end of the year are divided by the production in that year, the result is the length of time that the remaining reserves would last if production were to continue at that level.

India is the fourth largest producer of coal and lignite in the world. Coal production is concentrated in these states (Andhra Pradesh, Uttar Pradesh, Bihar, Madhya Pradesh, Maharashtra, Orissa, Jharkhand, West Bengal).

Oil Supply

Oil accounts for about 36 % of India's total energy consumption. India today is one of the top ten oil-guzzling nations in the world and will soon overtake Korea as the third largest consumer of oil in Asia after China and Japan. The country's annual crude oil production is peaked at about 32 million tonne as against the current peak demand of about 110 million tonne. In the current scenario, India's oil consumption by end of 2007 is expected to reach 136 million

The ever rising import bill				
Year	Quantity (MMT)	Value (Rs Crore)		
1996-97	33.90	18,337		
1997-98	34.49	15,872		
1998-99	39.81	19,907		
1999-00	57.80	40,028		
2000-01	74.10	65,932		
2001-02	84.90	80116		
2002-03	90	85,042		
2003-04	95	93,159		
*2004-05	100	1,30,000		
* Estimated				
Source: Ministry of Petroleum and Natural Gas				

tonne(MT), of which domestic production will be only 34 MT. India will have to pay an oil bill of roughly \$50 billion, assuming a weighted average price of \$50 per barrel of crude. In 2003-04, against total export of \$64 billion, oil imports accounted for \$21 billion. India imports 70% of its crude needs mainly from gulf nations. The majority of India's roughly 5.4 billion barrels in oil reserves are located in the Bombay High, upper Assam, Cambay, Krishna-Godavari. In terms of sector wise petroleum product consumption, transport accounts for 42% followed by domestic and industry with 24% and 24% respectively. India spent more than Rs.1,10,000 crore on oil imports at the end of 2004.

Natural Gas Supply

Natural gas accounts for about 8.9 per cent of energy consumption in the country. The current demand for natural gas is about 96 million cubic metres per day (mcmd) as against availability of 67 mcmd. By 2007, the demand is expected to be around 200 mcmd. Natural gas reserves are estimated at 660 billion cubic meters.

Electrical Energy Supply

The all India installed capacity of electric power generating stations under utilities was 1,12,581 MW as on 31st May 2004, consisting of 28,860 MW- hydro, 77,931 MW - thermal and 2,720 MW- nuclear and 1,869 MW- wind (Ministry of Power). The gross generation of power in the year 2002-2003 stood at 531 billion units (kWh).

Nuclear Power Supply

Nuclear Power contributes to about 2.4 per cent of electricity

generated in India. India has ten nuclear power reactors at five nuclear power stations producing electricity. More nuclear reactors have also been approved for construction.

Hydro Power Supply

India is endowed with a vast and viable hydro potential for power generation of which only 15% has been harnessed so far. The share of hydropower in the country's total generated units has steadily decreased and it presently stands at 25% as on 31st May 2004. It is assessed that exploitable potential at 60% load factor is 84,000 MW.

Final Energy Consumption

Final energy consumption is the actual energy demand at the user end. This is the difference between primary energy consumption and the losses that takes place in transport, transmission & distribution and refinement. The actual final energy consumption (past and projected) is given in Table 1.2.

TABLE 1.2 DEMAND FOR COMMERCIAL ENERGY FOR FINAL CONSUMPTION (BAU SCENARIO)					
Source	Units	1994-95	2001-02	2006-07	2011-12
Electricity	Billion Units	289.36	480.08	712.67	1067.88
Coal	Million Tonnes	76.67	109.01	134.99	173.47
Lignite	Million Tonnes	4.85	11.69	16.02	19.70
Natural Gas	Million Cubic Meters	9880	15730	18291	20853
Oil Products	Million Tonnes	63.55	99.89	139.95	196.47
Source: Planning Commission BAU: _Business As Usual					

Sector Wise Energy Consumption in India

The major commercial energy consuming sectors in the country are classified as shown in the Figure 1.5. As seen from the figure, industry remains the biggest consumer of commercial energy and its share in the overall consumption is 49%. (Reference year: 1999/2000)

1.7 Energy Needs of Growing Economy

Consumption (1999-2000)

Economic growth is desirable for developing countries, and

energy is essential for economic growth. However, the relationship between economic growth and increased energy demand is not always a straightforward linear one. For example, under present conditions, 6% increase in India's Gross Domestic Product (GDP) would impose an increased demand of 9 % on its energy sector.

In this context, the ratio of energy demand to GDP is a useful indicator. A high ratio reflects energy dependence and a strong influence of energy on GDP growth. The developed countries, by focusing on energy efficiency and lower energy-intensive routes, maintain their energy to GDP ratios at values of less than 1. The ratios for developing countries are much higher.

India's Energy Needs

The plan outlay vis-à-vis share of energy is given in Figure 1.6. As seen from the Figure, 18.0% of the total five-year plan outlay is spent on the energy sector.

Per Capita Energy Consumption

The per capita energy consumption (see Figure 1.7) is too low for India as compared to developed countries. It is just 4% of USA and 20% of the world average. The per capita consumption is likely to grow in India with growth in economy thus increasing the energy demand.

Figure 1.7 Per Capita Energy Consumption

Energy Intensity

Energy intensity is energy consumption per unit of GDP. Energy intensity indicates the development stage of the country. India's energy intensity is 3.7 times of Japan, 1.55 times of USA, 1.47 times of Asia and 1.5 times of World average.

1.8 Long Term Energy Scenario for India

Coal

Coal is the predominant energy source for power production in India, generating approximately 70% of total domestic electricity. Energy demand in India is expected to increase over the next 10-15 years; although new oil and gas plants are planned, coal is expected to remain the dominant fuel for power generation. Despite significant increases in total installed capacity during the last decade, the gap between electricity supply and demand continues to increase. The resulting shortfall has had a negative impact on industrial output and economic growth. However, to meet expected future demand, indigenous coal production will have to be greatly expanded. Production currently stands at around 290 Million tonnes per year, but coal demand is expected to more than double by 2010. Indian coal is typically of poor quality and as such requires to be beneficiated to improve the quality; Coal imports will also need to increase dramatically to satisfy industrial and power generation requirements.

Oil

India's demand for petroleum products is likely to rise from 97.7 million tonnes in 2001-02 to around 139.95 million tonnes in 2006-07, according to projections of the Tenth Five-Year Plan. The plan document puts compound annual growth rate (CAGR) at 3.6 % during the plan period. Domestic crude oil production is likely to rise marginally from 32.03 million tonnes in 2001-02 to 33.97 million tonnes by the end of the 10th plan period (2006-07). India's self sufficiency in oil has consistently declined from 60% in the 50s to 30% currently. Same is expect-

ed to go down to 8% by 2020. As shown in the figure 1.8, around 92% of India's total oil demand by 2020 has to be met by imports.

Natural Gas

India's natural gas production is likely to rise from 86.56 million cmpd in 2002-03 to 103.08 million cmpd in 2006-07. It is mainly based on the strength of a more than doubling of production by private operators to 38.25 mm cmpd.

Electricity

India currently has a peak demand shortage of around 14% and an energy deficit of 8.4%. Keeping this in view and to maintain a GDP (gross domestic product) growth of 8% to 10%, the Government of India has very prudently set a target of 215,804 MW power generation capacity by March 2012 from the level of 100,010 MW as

■ Net imports ■ Domestic production Figure 1.8 India's Oil Balance

Figure 1.9 Proven Oil Reserve/Consumption (in Million Tonnes) India Vs World (At End 2002)

on March 2001, that is a capacity addition of 115,794 MW in the next 11 years (Table 1.3). In the area of nuclear power the objective is to achieve 20,000 MW of nuclear generation capacity by the year 2020.

TABLE 1.3 INDIA'S PERSPECTIVE PLAN FOR POWER FOR ZERO DEFICIT POWER BY 2011/12 (SOURCE TENTH AND ELEVENTH FIVE-YEAR PLAN PROJECTIONS)					
	Thermal (Coal) (MW)	Gas / LNG / Diesel (MW)	Nuclear (MW)	Hydro (MW)	Total(MW)
Installed capacity as on March 2001	61,157	Gas: 10,153 Diesel: 864	2720	25,116	100,010
Additional capacity (2001-2012)	53,333	20,408	9380	32,673	115,794
Total capacity as on March 2012	114,490 (53.0%)	31,425 (14.6%)	12,100 (5.6%)	57,789 (26.8%)	215,804

Bureau of Energy Efficiency

1.9 Energy Pricing in India

Price of energy does not reflect true cost to society. The basic assumption underlying efficiency of market place does not hold in our economy, since energy prices are undervalued and energy wastages are not taken seriously. Pricing practices in India like many other developing countries are influenced by political, social and economic compulsions at the state and central level. More often than not, this has been the foundation for energy sector policies in India. The Indian energy sector offers many examples of cross subsidies e.g., diesel, LPG and kerosene being subsidised by petrol, petroleum products for industrial usage and industrial, and commercial consumers of electricity subsidising the agricultural and domestic consumers.

Coal

Grade wise basic price of coal at the pithead excluding statutory levies for run-of-mine (ROM) coal are fixed by Coal India Ltd from time to time. The pithead price of coal in India compares favourably with price of imported coal. In spite of this, industries still import coal due its higher calorific value and low ash content.

Oil

As part of the energy sector reforms, the government has attempted to bring prices for many of the petroleum products (naphtha, furnace oil, LSHS, LDO and bitumen) in line with international prices. The most important achievement has been the linking of diesel prices to international prices and a reduction in subsidy. However, LPG and kerosene, consumed mainly by domestic sectors, continue to be heavily subsidised. Subsidies and cross-subsidies have resulted in serious distortions in prices, as they do not reflect economic costs in many cases.

Natural Gas

The government has been the sole authority for fixing the price of natural gas in the country. It has also been taking decisions on the allocation of gas to various competing consumers. The gas prices varies from Rs 5 to Rs.15 per cubic metre.

Electricity

Electricity tariffs in India are structured in a relatively simple manner. While high tension consumers are charged based on both demand (kVA) and energy (kWh), the low-tension (LT) consumer pays only for the energy consumed (kWh) as per tariff system in most of the electricity boards. The price per kWh varies significantly across States as well as customer segments within a State. Tariffs in India have been modified to consider the time of usage and voltage level of supply. In addition to the base tariffs, some State Electricity Boards have additional recovery from customers in form of fuel surcharges, electricity duties and taxes. For example, for an industrial consumer the demand charges may vary from Rs. 150 to Rs. 300 per kVA, whereas the energy charges may vary anywhere between Rs. 2 to Rs. 5 per kWh. As for the tariff adjustment mechanism, even when some States have regulatory commissions for tariff review, the decisions to effect changes are still political and there is no automatic adjustment mechanism, which can ensure recovery of costs for the electricity boards.

1.10 Energy Sector Reforms

Since the initiation of economic reforms in India in 1991, there has been a growing acceptance of the need for deepening these reforms in several sectors of the economy, which were essentially in the hands of the government for several decades. It is now been realized that if substance has to be provided to macroeconomic policy reform, then it must be based on reforms that concern the functioning of several critical sectors of the economy, among which the infrastructure sectors in general and the energy sector in particular, are paramount.

Coal

The government has recognized the need for new coal policy initiatives and for rationalization of the legal and regulatory framework that would govern the future development of this industry. One of the key reforms is that the government has allowed importing of coal to meet our requirements. Private sector has been allowed to extract coal for captive use only. Further reforms are contemplated for which the Coal Mines Nationalization Act needs to be amended for which the Bill is awaiting approval of the Parliament.

The ultimate objective of some of the ongoing measures and others under consideration is to see that a competitive environment is created for the functioning of various entities in this industry. This would not only bring about gains in efficiency but also effect cost reduction, which would consequently ensure supply of coal on a larger scale at lower prices. Competition would also have the desirable effect of bringing in new technology, for which there is an urgent and overdue need since the coal industry has suffered a prolonged period of stagnation in technological innovation.

Oil and Natural Gas

Since 1993, private investors have been allowed to import and market liquefied petroleum gas (LPG) and kerosene freely; private investment is also been allowed in lubricants, which are not subject to price controls. Prices for naphtha and some other fuels have been liberalized. In 1997 the government introduced the New Exploration Licensing Policy (NELP) in an effort to promote investment in the exploration and production of domestic oil and gas. In addition, the refining sector has been opened to private and foreign investors in order to reduce imports of refined products and to encourage investment in downstream pipelines. Attractive terms are being offered to investors for the construction of liquefied natural gas (LNG) import facilities.

Electricity

Following the enactment of the Electricity Regulatory Commission Legislation, the Central Electricity Regulatory Commission (CERC) was set up, with the main objective of regulating the Central power generation utilities. State level regulatory bodies have also been set up to set tariffs and promote competition. Private investments in power generation were also allowed. The State SEBs were asked to switch over to separate Generation, Transmission and Distribution corporations. There are plans to link all SEB grids and form a unified national power grid.

Electricity Act, 2003

The government has enacted Electricity Act, 2003 which seeks to bring about a qualitative transformation of the electricity sector. The Act seeks to create liberal framework of develop-

ment for the power sector by distancing Government from regulation. It replaces the three existing legislations, namely, Indian Electricity Act, 1910, the Electricity (Supply) Act, 1948 and the Electricity Regulatory Commissions Act, 1998. The objectives of the Act are "to consolidate the laws relating to generation, transmission, distribution, trading and use of electricity and generally for taking measures conducive to development of electricity industry, promoting competition therein, protecting interest of consumers and supply of electricity to all areas, rationalization of electricity tariff, ensuring transparent policies regarding subsidies, promotion of efficient and environmentally benign policies, constitution of Central Electricity Authority, Regulatory Commissions and establishment of Appellate Tribunal and for matters connected therewith or incidental thereto."

The salient features of the Electricity Act, 2003 are:

i) The Central Government to prepare a National Electricity Policy in consultation with State Governments. (Section 3)

ii) Thrust to complete the rural electrification and provide for management of rural distribution by Panchayats, Cooperative Societies, non-Government organisations, franchisees etc. (Sections 4, 5 & 6)

iii) Provision for licence free generation and distribution in the rural areas. (Section 14)

iv) Generation being delicensed and captive generation being freely permitted. Hydro projects would, however, need clearance from the Central Electricity Authority. (Sections 7, 8 & 9)

v) Transmission Utility at the Central as well as State level, to be a Government company - with responsibility for planned and coordinated development of transmission network. (Sections 38 & 39)

vi) Provision for private licensees in transmission and entry in distribution through an independent network, (Section 14)

vii) Open access in transmission from the outset. (Sections 38-40)

viii) Open access in distribution to be introduced in phases with surcharge for current level of cross subsidy to be gradually phased out along with cross subsidies and obligation to supply. SERCs to frame regulations within one year regarding phasing of open access. (Section 42)

ix) Distribution licensees would be free to undertake generation and generating companies would be free to take up distribution businesses. (Sections 7, 12)

x) The State Electricity Regulatory Commission is a mandatory requirement. (Section 82)

xi) Provision for payment of subsidy through budget. (Section 65)

xii) Trading, a distinct activity is being recognised with the safeguard of the Regulatory Commissions being authorised to fix ceilings on trading margins, if necessary. (Sections 12, 79 & 86)

xiii) Provision for reorganisation or continuance of SEBs. (Sections 131 & 172)

xiv) Metering of all electricity supplied made mandatory. (Section 55)

xv) An Appellate Tribunal to hear appeals against the decision of the CERC and SERCs. (Section 111)

xvi) Provisions relating to theft of electricity made more stringent. (Section 135-150)

xvii) Provisions safeguarding consumer interests. (Sections 57-59, 166) Ombudsman scheme (Section 42) for consumers grievance redressal.

1.11 Energy and Environment

The usage of energy resources in industry leads to environmental damages by polluting the atmosphere. Few of examples of air pollution are sulphur dioxide (SO₂), nitrous oxide (NO_X) and carbon monoxide (CO) emissions from boilers and furnaces, chloro-fluro carbons (CFC) emissions from refrigerants use, etc. In chemical and fertilizers industries, toxic gases are released. Cement plants and power plants spew out particulate matter. Typical inputs, outputs, and emissions for a typical industrial process are shown in Figure 1.10.

Figure 1.10 Inputs & Outputs of Process

Air Pollution

A variety of air pollutants have known or suspected harmful effects on human health and the environment. These air pollutants are basically the products of combustion from fossil fuel use. Air pollutants from these sources may not only create problems near to these sources but also can cause problems far away. Air pollutants can travel long distances, chemically react in the atmosphere to produce secondary pollutants such as acid rain or ozone.

Evolutionary Trends in Pollution Problems

In both developed and rapidly industrialising countries, the major historic air pollution problem has typically been high levels of smoke and SO_2 arising from the combustion of sulphur-containing fossil fuels such as coal for domestic and industrial purposes.

Smogs resulting from the combined effects of black smoke, sulphate / acid aerosol and fog have been seen in European cities until few decades ago and still occur in many cities in developing world. In developed countries, this problem has significantly reduced over recent decades as a result of changing fuel-use patterns; the increasing use of cleaner fuels such as natural gas, and the implementation of effective smoke and emission control policies.

In both developed and developing countries, the major threat to clean air is now posed by traffic emissions. Petrol- and diesel-engined motor vehicles emit a wide variety of pollutants, principally carbon monoxide (CO), oxides of nitrogen (NOx), volatile organic compounds (VOCs) and particulates, which have an increasing impact on urban air quality.

In addition, photochemical reactions resulting from the action of sunlight on NO_2 and VOCs from vehicles leads to the formation of ozone, a secondary long-range pollutant, which impacts in rural areas often far from the original emission site. Acid rain is another long-range pollutant influenced by vehicle NOx emissions.

Industrial and domestic pollutant sources, together with their impact on air quality, tend to be steady-state or improving over time. However, traffic pollution problems are worsening world-wide. The problem may be particularly severe in developing countries with dramatically increasing vehicle population, infrastructural limitations, poor engine/emission control technologies and limited provision for maintenance or vehicle regulation. The principle pollutants produced by industrial, domestic and traffic sources are sulphur dioxide, nitrogen oxides, particulate matter, carbon monoxide, ozone, hydrocarbons, benzene, 1,3-butadiene, toxic organic micropollutants, lead and heavy metals.

Brief introduction to the principal pollutants are as follows:

Sulphur dioxide is a corrosive acid gas, which combines with water vapour in the atmosphere to produce acid rain. Both wet and dry deposition have been implicated in the damage and destruction of vegetation and in the degradation of soils, building materials and watercourses. SO_2 in ambient air is also associated with asthma and chronic bronchitis. The principal source of this gas is power stations and industries burning fossil fuels, which contain sulphur.

Nitrogen oxides are formed during high temperature combustion processes from the oxidation of nitrogen in the air or fuel. The principal source of nitrogen oxides - nitric oxide (NO) and nitrogen dioxide (NO₂), collectively known as NOx - is road traffic. NO and NO₂ concentrations are greatest in urban areas where traffic is heaviest. Other important sources are power stations and industrial processes.

Nitrogen oxides are released into the atmosphere mainly in the form

of NO, which is then readily oxidised to NO_2 by reaction with ozone. Elevated levels of NO_x occur in urban environments under stable meteorological conditions, when the air mass is unable to disperse.

Nitrogen dioxide has a variety of environmental and health impacts. It irritates the respiratory system and may worsen asthma and increase susceptibility to infections. In the presence of sunlight, it reacts with hydrocarbons to produce photochemical pollutants such as ozone.

Nitrogen oxides combine with water vapour to form nitric acid. This nitric acid is in turn removed from the atmosphere by direct deposition to the ground, or transfer to aqueous droplets (e.g. cloud or rainwater), thereby contributing to acid deposition.

Acidification from SO₂ and NO_x

Acidification of water bodies and soils, and the consequent impact on agriculture, forestry and fisheries are the result of the re-deposition of acidifying compounds resulting principally from the oxidation of primary SO_2 and NO_2 emissions from fossil fuel combustion. Deposition may be by either wet or dry processes, and acid deposition studies often need to examine both of these acidification routes.

Airborne **particulate matter** varies widely in its physical and chemical composition, source and particle size. PM_{10} particles (the fraction of particulates in air of very small size (<10 µm)) are of major current concern, as they are small enough to penetrate deep into the lungs and so potentially pose significant health risks. In addition, they may carry surface-absorbed carcinogenic compounds into the lungs. Larger particles, meanwhile, are not readily inhaled, and are removed relatively efficiently from the air by settling.

A major source of fine primary particles are combustion processes, in particular diesel com-

bustion, where transport of hot exhaust vapour into a cooler exhaust pipe can lead to spontaneous nucleation of "carbon" particles before emission. Secondary particles are typically formed when low volatility products are generated in the atmosphere, for example the oxidation of sulphur dioxide to sulphuric acid. The atmospheric lifetime of particulate matter is strongly related to particle size, but may be as long as 10 days for particles of about 1mm in diameter.

Concern about the potential health impacts of PM_{10} has increased very rapidly over recent years. Increasingly, attention has been turning towards monitoring of the smaller particle fraction $PM_{2.5}$ capable of penetrating deepest into the lungs, or to even smaller size fractions or total particle numbers.

Carbon monoxide (CO) is a toxic gas, which is emitted into the atmosphere as a result of combustion processes, and from oxidation of hydrocarbons and other organic compounds. In urban areas, CO is produced almost entirely (90%) from road traffic emissions. CO at levels found in ambient air may reduce the oxygen-carrying capacity of the blood. It survives in the atmosphere for a period of approximately 1 month and finally gets oxidised to carbon dioxide (CO₂).

Ground-level ozone (O_3), unlike other primary pollutants mentioned above, is not emitted directly into the atmosphere, but is a secondary pollutant produced by reaction between nitrogen dioxide (NO₂), hydrocarbons and sunlight. Ozone can irritate the eyes and air passages causing breathing difficulties and may increase susceptibility to infection. It is a highly reactive chemical, capable of attacking surfaces, fabrics and rubber materials. Ozone is also toxic to some crops, vegetation and trees.

Whereas nitrogen dioxide (NO_2) participates in the formation of ozone, nitrogen oxide (NO) destroys ozone to form oxygen (O_2) and nitrogen dioxide (NO_2) . For this reason, ozone levels are not as high in urban areas (where high levels of NO are emitted from vehicles) as in rural areas. As the nitrogen oxides and hydrocarbons are transported out of urban areas, the ozone-destroying NO is oxidised to NO₂, which participates in ozone formation.

Hydrocarbons

There are two main groups of hydrocarbons of concern: volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs). VOCs are released in vehicle exhaust gases either as unburned fuels or as combustion products, and are also emitted by the evaporation of solvents and motor fuels. Benzene and 1,3-butadiene are of particular concern, as they are

known carcinogens. Other VOCs are important because of the role they play in the photochemical formation of ozone in the atmosphere.

Benzene is an aromatic VOC, which is a minor constituent of petrol (about 2% by volume). The main sources of benzene in the atmosphere are the distribution and combustion of petrol. Of these, combustion by petrol vehicles is the single biggest source (70% of total emissions)

whilst the refining, distribution and evaporation of petrol from vehicles accounts for approximately a further 10% of total emissions. Benzene is emitted in vehicle exhaust not only as unburnt fuel but also as a product of the decomposition of other aromatic compounds. Benzene is a known human carcinogen.

1,3-butadiene, like benzene, is a VOC emitted into the atmosphere principally from fuel combustion of petrol and diesel vehicles. Unlike benzene, however, it is not a constituent of the fuel but is produced by the combustion of olefins. 1,3-butadiene is also an important chemical in certain industrial processes, particularly the manufacture of synthetic rubber. It is handled in bulk at a small number of industrial locations. Other than in the

vicinity of such locations, the dominant source of 1,3-butadiene in the atmosphere are the motor vehicles. 1,3 Butadiene is also a known, potent, human carcinogen.

TOMPs (Toxic Organic Micropollutants) are produced by the incomplete combustion of fuels. They comprise a complex range of chemicals some of which, although they are emitted in very small quantities, are highly toxic or and carcinogenic. Compounds in this category include:

- · PAHs (PolyAromatic Hydrocarbons)
- · PCBs (PolyChlorinated Biphenyls)
- \cdot Dioxins
- · Furans

Heavy Metals and Lead

Particulate metals in air result from activities such as fossil fuel combustion (including vehicles), metal processing industries and waste incineration. There are currently no emission standards for metals other than lead. Lead is a cumulative poison to the central nervous system, particularly detrimental to the mental development of children.

Lead is the most widely used non-ferrous metal and has a large number

of industrial applications. Its single largest industrial use worldwide is in the manufacture of batteries and it is also used in paints, glazes, alloys, radiation shielding, tank lining and piping.

As tetraethyl lead, it has been used for many years as an additive in petrol; with the increasing use of unleaded petrol, however, emissions and concentrations in air have reduced steadily in recent years.

Climatic Change

Human activities, particularly the combustion of fossil fuels, have made the blanket of greenhouse gases (water vapour, carbon dioxide, methane, ozone etc.) around the earth thicker. The resulting increase in global temperature is altering the complex web of systems that allow life to thrive on earth such as rainfall, wind patterns, ocean currents and distribution of plant and animal species.

Greenhouse Effect and the Carbon Cycle

Life on earth is made possible by energy from the sun, which arrives mainly in the form of vis-

16

Figure 1.11 The Greenhouse Effect

ible light. About 30 percent of the sunlight is scattered back into space by outer atmosphere and the balance 70 percent reaches the earth's surface, which reflects it in form of infrared radiation. The escape of slow moving infrared radiation is delayed by the green house gases. A thicker blanket of greenhouse gases traps more infrared radiation and increase the earth's temperature (Refer Figure 1.11).

Greenhouse gases makeup only 1 percent of the atmosphere, but they act as a blanket around the earth, or like a glass roof of a greenhouse and keep the earth 30 degrees warmer than it would be otherwise - without greenhouse gases, earth would be too cold to live. Human activities that are responsible for making the greenhouse layer thicker are emissions of carbon dioxide from the combustion of coal, oil and natural gas; by additional methane and nitrous oxide from farming activities and changes in land use; and by several man made gases that have a long life in the atmosphere.

The increase in greenhouse gases is happening at an alarming rate. If greenhouse gases emissions continue to grow at current rates, it is almost certain that the atmospheric levels of carbon dioxide will increase twice or thrice from pre-industrial levels during the 21st century.

Even a small increase in earth's temperature will be accompanied by changes in climatesuch as cloud cover, precipitation, wind patterns and duration of seasons. In an already highly crowded and stressed earth, millions of people depend on weather patterns, such as monsoon rains, to continue as they have in the past. Even minimum changes will be disruptive and difficult.

Carbon dioxide is responsible for 60 percent of the "enhanced greenhouse effect". Humans are burning coal, oil and natural gas at a rate that is much faster than the rate at which these fossil fuels were created. This is releasing the carbon stored in the fuels into the atmosphere and upsetting the carbon cycle (a precise balanced system by which carbon is exchanged between

the air, the oceans and land vegetation taking place over millions of years). Currently, carbon dioxide levels in the atmospheric are rising by over 10 percent every 20 years.

Current Evidence of Climatic Change

Cyclones, storm, hurricanes are occurring more frequently and floods and draughts are more intense than before. This increase in extreme weather events cannot be explained away as random events.

This trend toward more powerful storms and hotter, longer dry periods is predicted by computer models. Warmer temperatures mean greater evaporation, and a warmer atmosphere is able to hold more moisture and hence there is more water aloft that can fall as precipitation. Similarly, dry regions are prone to lose still more moisture if the weather is hotter and hence this leads to more severe droughts and desertification.

Future Effects

Even the minimum predicted shifts in climate for the 21st century are likely to be significant and disruptive. Predictions of future climatic changes are wide-ranging. The global temperature may climb from 1.4 to 5.8 degrees C; the sea level may rise from 9 to 88 cm. Thus, increases in sea level this century are expected to range from significant to catastrophic. This uncertainty reflects the complexity, interrelatedness, and sensitivity of the natural systems that make up the climate.

Severe Storms and Flooding

The minimum warming forecast for the next 100 years is more than twice the 0.6 degree C increase that has occurred since 1900 and that earlier increase is already having marked consequences. Extreme weather events, as predicted by computer models, are striking more often and can be expected to intensify and become still more frequent. A future of more severe storms and floods along the world's increasingly crowded coastlines is likely.

Food Shortages

Although regional and local effects may differ widely, a general reduction is expected in potential crop yields in most tropical and sub-tropical regions. Mid-continental areas such as the United States' "grain belt" and vast areas of Asia are likely to become dry. Sub-Saharan Africa where dryland agriculture relies solely on rain, the yields would decrease dramatically even with minimum increase in temperature. Such changes could cause disruptions in food supply in a world is already afflicted with food shortages and famines.

Dwindling Freshwater supply

Salt-water intrusion from rising sea levels will reduce the quality and quantity of freshwater supplies. This is a major concern, since billions of people on earth already lack access to freshwater. Higher ocean levels already are contaminating underground water sources in many parts of the world.

Loss of Biodiversity

Most of the world's endangered species (some 25 per cent of mammals and 12 per cent of birds) may become extinct over the next few decades as warmer conditions alter the forests, wetlands,

and rangelands they depend on, and human development blocks them from migrating elsewhere.

Increased Diseases

Higher temperatures are expected to expand the range of some dangerous "vector-borne" diseases, such as malaria, which already kills 1 million people annually, most of them children.

A World Under Stress

Ongoing environmentally damaging activities such as overgrazing, deforestation, and denuded agricultural soils means that nature will be more vulnerable than previously to changes in climate.

Similarly, the world's vast human population, much of it poor, is vulnerable to climate stress. Millions live in dangerous places such as floodplains or in slums around the big cities of the developing world. Often there is nowhere else for population to move. In the distant past, man and his ancestors migrated in response to changes in habitat. There will be much less room for migration in future.

Global warming almost certainly will be unfair. The industrialized countries of North America and Western Europe, and other countries such as Japan, are responsible for the vast amount of past and current greenhouse-gas emissions. These emissions are incurred for the high standards of living enjoyed by the people in those countries.

Yet those to suffer most from climate change will be in the developing world. They have fewer resources for coping with storms, with floods, with droughts, with disease outbreaks, and with disruptions to food and water supplies. They are eager for economic development themselves, but may find that this already difficult process has become more difficult because of climate change. The poorer nations of the world have done almost nothing to cause global warming yet is most exposed to its effects.

Acid Rain

Acid rain is caused by release of SO_X and NO_X from combustion of fossil fuels, which then mix

Figure 1.12

with water vapour in atmosphere to form sulphuric and nitric acids respectively (Refer Figure 1.12).

The effects of acid rain are as follows:

- Acidification of lakes, streams, and soils
- Direct and indirect effects (release of metals, For example: Aluminum which washes away plant nutrients)
- Killing of wildlife (trees, crops, aquatic plants, and animals)
- Decay of building materials and paints, statues, and sculptures
- Health problems (respiratory, burning- skin and eyes)

1.12 Energy Security

The basic aim of energy security for a nation is to reduce its dependency on the imported energy sources for its economic growth.

India will continue to experience an energy supply shortfall throughout the forecast period. This gap has widened since 1985, when the country became a net importer of coal. India has been unable to raise its oil production substantially in the 1990s. Rising oil demand of close to 10 percent per year has led to sizable oil import bills. In addition, the government subsidises refined oil product prices, thus compounding the overall monetary loss to the government.

Imports of oil and coal have been increasing at rates of 7% and 16% per annum respectively during the period 1991-99. The dependence on energy imports is projected to increase in the future. Estimates indicate that oil imports will meet 75% of total oil consumption requirements and coal imports will meet 22% of total coal consumption requirements in 2006. The imports of gas and LNG (liquefied natural gas) are likely to increase in the coming years. This energy import dependence implies vulnerability to external price shocks and supply fluctuations, which threaten the energy security of the country.

Increasing dependence on oil imports means reliance on imports from the Middle East, a region susceptible to disturbances and consequent disruptions of oil supplies. This calls for diversification of sources of oil imports. The need to deal with oil price fluctuations also necessitates measures to be taken to reduce the oil dependence of the economy, possibly through fiscal measures to reduce demand, and by developing alternatives to oil, such as natural gas and renewable energy.

Some of the strategies that can be used to meet future challenges to their energy security are

- Building stockpiles
- Diversification of energy supply sources
- Increased capacity of fuel switching
- Demand restraint,
- Development of renewable energy sources.
- Energy efficiency
- Sustainable development

Although all these options are feasible, their implementation will take time. Also, for countries like India, reliance on stockpiles would tend to be slow because of resource constraints. Besides, the market is not sophisticated enough or the monitoring agencies experienced enough to predict the supply situation in time to take necessary action. Insufficient storage capacity is another cause for worry and needs to be augmented, if India has to increase its energy stockpile.

However, out of all these options, the simplest and the most easily attainable is reducing demand through persistent energy conservation efforts.

1.13 Energy Conservation and its Importance

Coal and other fossil fuels, which have taken three million years to form, are likely to deplete soon. In the last two hundred years, we have consumed 60% of all resources. For sustainable development, we need to adopt energy efficiency measures.

Today, 85% of primary energy comes from nonrenewable, and fossil sources (coal, oil, etc.). These reserves are continually diminishing with increasing consumption and will not exist for future generations (see Figure 1.13).

What is Energy Conservation?

Energy Conservation and Energy Efficiency are separate, but related concepts. Energy conservation is achieved when growth of energy consumption is reduced, measured in physical terms. Energy Conservation can, therefore, be the result of several processes or developments, such as productivity increase or technological progress. On the other hand Energy efficiency is achieved when energy intensity in a specific product, process or area of production or consumption is reduced without affecting output, consumption or comfort levels. Promotion of energy efficiency will contribute to energy conservation and is therefore an integral part of energy conservation promotional policies.

Consumption of fossil fuels

Figure 1.14

Energy efficiency is often viewed as a resource option like coal, oil or natural gas. It provides additional economic value by preserving the resource base and reducing pollution. For example, replacing traditional light bulbs with Compact Fluorescent Lamps (CFLs) means you will use only 1/4th of the energy to light a room. Pollution levels also reduce by the same amount (refer Figure 1.14).

Nature sets some basic limits on how efficiently energy can be used, but in most cases our products and manufacturing processes are still a long way from operating at this theoretical limit. Very simply, energy efficiency means using less energy to perform the same function.

Although, energy efficiency has been in practice ever since the first oil crisis in 1973, it has today assumed even more importance because of being the most cost-effective and reliable means of mitigating the global climatic change. Recognition of that potential has led to high expectations for the control of future CO_2 emissions through even more energy efficiency improvements than have occurred in the past. The industrial sector accounts for some 41 per cent of global primary energy demand and approximately the same share of CO_2 emissions. The

Energy	y Efficiency B	enefits-
Industry	Nation	Globe
 Reduced energy bills Increased Competitiveness Increased productivity Improved quality Increased profits ! 	 Reduced energy imports Avoided costs can be used for poverty reduction Conservation of limited resources Improved energy security 	 Reduced GHG and other emissions Maintains a sustainable environment

Figure 1.15

benefits of Energy conservation for various players are given in Figure 1.15.

1.14 Energy Strategy for the Future

The energy strategy for the future could be classified into immediate, medium-term and long-term strategy. The various components of these strategies are listed below:

Immediate-term strategy:

- Rationalizing the tariff structure of various energy products.
- Optimum utilization of existing assets
- Efficiency in production systems and reduction in distribution losses, including those in traditional energy sources.
- Promoting R&D, transfer and use of technologies and practices for environmentally sound energy systems, including new and renewable energy sources.

Medium-term strategy:

- Demand management through greater conservation of energy, optimum fuel mix, structural changes in the economy, an appropriate model mix in the transport sector, i.e. greater dependence on rail than on road for the movement of goods and passengers and a shift away from private modes to public modes for passenger transport; changes in design of different products to reduce the material intensity of those products, recycling, etc.
- There is need to shift to less energy-intensive modes of transport. This would include measures to improve the transport infrastructure viz. roads, better design of vehicles, use of compressed natural gas (CNG) and synthetic fuel, etc. Similarly, better urban planning would also reduce the demand for energy use in the transport sector.
- There is need to move away from non-renewable to renewable energy sources viz. solar, wind, biomass energy, etc.

Long-term strategy:

- Efficient generation of energy resources
 - Efficient production of coal, oil and natural gas
 - Reduction of natural gas flaring
- Improving energy infrastructure
 - Building new refineries
 - Creation of urban gas transmission and distribution network
 - Maximizing efficiency of rail transport of coal production.
 - Building new coal and gas fired power stations.
- Enhancing energy efficiency
 - Improving energy efficiency in accordance with national, socio-economic, and environmental priorities
 - Promoting of energy efficiency and emission standards
 - Labeling programmes for products and adoption of energy efficient technologies in large industries
- > Deregulation and privatization of energy sector
 - Reducing cross subsidies on oil products and electricity tariffs
 - Decontrolling coal prices and making natural gas prices competitive
 - Privatization of oil, coal and power sectors for improved efficiency.
- > Investment legislation to attract foreign investments.
 - Streamlining approval process for attracting private sector participation in power generation, transmission and distribution .

1.15 The Energy Conservation Act, 2001 and its Features

Policy Framework - Energy Conservation Act - 2001

With the background of high energy saving potential and its benefits, bridging the gap between demand and supply, reducing environmental emissions through energy saving, and to effectively overcome the barrier, the Government of India has enacted the Energy Conservation Act - 2001. The Act provides the much-needed legal framework and institutional arrangement for embarking on an energy efficiency drive.

Under the provisions of the Act, Bureau of Energy Efficiency has been established with effect from 1st March 2002 by merging erstwhile Energy Management Centre of Ministry of Power. The Bureau would be responsible for implementation of policy programmes and coordination of implementation of energy conservation activities.

Important features of the Energy Conservation Act are:

Standards and Labeling

Standards and Labeling (S & L) has been identified as a key activity for energy efficiency improvement. The S & L program, when in place would ensure that only energy efficient equipment and appliance would be made available to the consumers.

The main provision of EC act on Standards and Labeling are:

- Evolve minimum energy consumption and performance standards for notified equipment and appliances.
- Prohibit manufacture, sale and import of such equipment, which does not conform to the standards.
- Introduce a mandatory labeling scheme for notified equipment appliances to enable consumers to make informed choices
- Disseminate information on the benefits to consumers

Designated Consumers

The main provisions of the EC Act on designated consumers are:

- The government would notify energy intensive industries and other establishments as designated consumers;
- Schedule to the Act provides list of designated consumers which covered basically energy intensive industries, Railways, Port Trust, Transport Sector, Power Stations, Transmission & Distribution Companies and Commercial buildings or establishments;
- The designated consumer to get an energy audit conducted by an accredited energy auditor;
- Energy managers with prescribed qualification are required to be appointed or designated by the designated consumers;
- Designated consumers would comply with norms and standards of energy consumption as prescribed by the central government.

Certification of Energy Managers and Accreditation of Energy Auditing Firms

The main activities in this regard as envisaged in the Act are:

A cadre of professionally qualified energy managers and auditors with expertise in policy analysis, project management, financing and implementation of energy efficiency projects would be developed through Certification and Accreditation programme. BEE to design training modules, and conduct a National level examination for certification of energy managers and energy auditors.

Energy Conservation Building Codes:

The main provisions of the EC Act on Energy Conservation Building Codes are:

- The BEE would prepare guidelines for Energy Conservation Building Codes (ECBC);
- These would be notified to suit local climate conditions or other compelling factors by the respective states for commercial buildings erected after the rules relating to energy conservation building codes have been notified. In addition, these buildings should have a connected load of 500 kW or contract demand of 600 kVA and above and are intended to be used for commercial purposes;
- Energy audit of specific designated commercial building consumers would also be prescribed.

Central Energy Conservation Fund:

The EC Act provisions in this case are:

• The fund would be set up at the centre to develop the delivery mechanism for large-scale adoption of energy efficiency services such as performance contracting and promotion of energy service companies. The fund is expected to give a thrust to R & D and demonstration in order to boost market penetration of efficient equipment and appliances. It would support the creation of facilities for testing and development and to promote consumer awareness.

Bureau of Energy Efficiency (BEE):

- The mission of Bureau of Energy Efficiency is to institutionalize energy efficiency services, enable delivery mechanisms in the country and provide leadership to energy efficiency in all sectors of economy. The primary objective would be to reduce energy intensity in the Indian Economy.
- The general superintendence, directions and management of the affairs of the Bureau is vested in the Governing Council with 26 members. The Council is headed by Union Minister of Power and consists of members represented by Secretaries of various line Ministries, the CEOs of technical agencies under the Ministries, members representing equipment and appliance manufacturers, industry, architects, consumers and five power regions representing the states. The Director General of the Bureau shall be the ex-officio member-secretary of the Council.
- The BEE will be initially supported by the Central Government by way of grants through budget, it will, however, in a period of 5-7 years become self-sufficient. It would be authorized to collect appropriate fee in discharge of its functions assigned to it. The BEE will also use the Central Energy Conservation Fund and other funds raised from various sources for innovative financing of energy efficiency projects in order to promote energy efficient investment.

Role of Bureau of Energy Efficiency

• The role of BEE would be to prepare standards and labels of appliances and equipment, develop a list of designated consumers, specify certification and accreditation procedure, prepare building codes, maintain Central EC fund and undertake promotional activities in co-ordination with center and state level agencies. The role would include development of Energy service companies (ESCOs), transforming the market for energy efficiency and create awareness through measures including clearing house.

Role of Central and State Governments:

The following role of Central and State Government is envisaged in the Act

- Central to notify rules and regulations under various provisions of the Act, provide initial financial assistance to BEE and EC fund, Coordinate with various State Governments for notification, enforcement, penalties and adjudication.
- State to amend energy conservation building codes to suit the regional and local climatic condition, to designate state level agency to coordinate, regulate and enforce provisions of the Act and constitute a State Energy Conservation Fund for promotion of energy efficiency.

Enforcement through Self-Regulation:

E.C. Act would require inspection of only two items. The following procedure of self-regulation is proposed to be adopted for verifying areas that require inspection of only two items that require inspection.

- The certification of energy consumption norms and standards of production process by the Accredited Energy Auditors is a way to enforce effective energy efficiency in Designated Consumers.
- For energy performance and standards, manufacturer's declared values would be checked in Accredited Laboratories by drawing sample from market. Any manufacturer or consumer or consumer association can challenge the values of the other manufacturer and bring to the notice of BEE. BEE can recognize for challenge testing in disputed cases as a measure for self-regulation.

Penalties and Adjudication:

- Penalty for each offence under the Act would be in monetary terms i.e. Rs.10,000 for each offence and Rs.1,000 for each day for continued non Compliance.
- The initial phase of 5 years would be promotional and creating infrastructure for implementation of Act. No penalties would be effective during this phase.
- The power to adjudicate has been vested with state Electricity Regulatory Commission which shall appoint any one of its member to be an adjudicating officer for holding an enquiry in connection with the penalty imposed.

Features Extracted from The Energy Conservation Act, 2001.

CHAPTER -I

Definitions

In this Act, unless the context otherwise requires: -

- (a) "accredited energy auditor" means an auditor possessing qualifications specified under clause (p) of sub-section (2) of section 13;
- (*b*) "Appellate Tribunal" means Appellate Tribunal for Energy Conservation established under section 30;
- (c) "building" means any structure or erection or part of a structure or erection, after the rules relating to energy conservation building codes have been notified under clause (a) of section 15 of clause (l) of sub-section (2) of section 56, which is having a connected load of 500kW or contract demand of 600 kVA and above and is intended to be used for commercial purposes;
- (d) "Bureau" means the Bureau of Energy Efficiency established under subsection (l) of section 3;
- (e) "Chairperson" means the Chairperson of the Governing council;
- (f) "designated agency" means any agency designated under clause (d) of section 15;
- (g) "designated consumer" means any consumer specified under clause (e) of section 14;
- (h) "energy" means any form of energy derived from fossil fuels, nuclear substances or mate-

rials, hydro-electricity and includes electrical energy or electricity generated from renewable sources of energy or bio-mass connected to the grid;

- (*i*) "energy audit" means the verification, monitoring and analysis of use of energy including submission of technical report containing recommendations for improving energy efficiency with cost benefit analysis and an action plan to reduce energy consumption;
- (*j*) "energy conservation building codes" means the norms and standards of energy consumption expressed in terms of per square meter of the area wherein energy is used and includes the location of the building;
- (*k*) "energy consumption standards" means the norms for process and energy consumption standards specified under clause (a) of section 14;
- (l) "Energy Management Centre" means the Energy Management Centre set up under the Resolution of the Government of India in the erstwhile Ministry of Energy, Department of Power No. 7(2)/87-EP (Vol. IV), dated the 5th July, 1989 and registered under the Societies Registration Act, 1860; (21 of 1860)
- (m) "energy manager" means any individual possessing the qualifications prescribed under clause (m) of section 14;
- (*n*) "Governing Council" means the Governing Council referred to in section 4;
- (o) "member" means the member of the Governing Council and includes the Chairperson;
- (*p*) "notification" means a notification in the Gazette of India or, as the case may be, the Official Gazette of a State;
- (q) "prescribed" means prescribed by rules made under this Act;
- (r) "regulations" means regulations made by the Bureau under this Act;
- (s) "schedule" means the Schedule of this Act;
- (t) "State Commission" means the State Electricity Regulatory Commission established under sub-section (l) of section 17 of the Electricity Regulatory Commissions Act, 1998; (14 of 1998)
- (u) words and expression used and not defined in this Act but defined in the Indian Electricity Act, 1910 or the Electricity (Supply) Act, 1948 or the Electricity Regulatory Commissions Act, 1998 shall have meanings respectively assigned to them in those Acts. (9 of 1940, 54 of 1948,14 of 1998)

CHAPTER IV,

SECTION 13

Powers and Functions of Bureau

- (1) The Bureau shall, effectively co-ordinate with designated consumers, designated agencies and other agencies, recognise and utilise the existing resources and infrastructure, in performing the functions assigned to it by or under this Act
- (2) The Bureau may perform such functions and exercise such powers as may be assigned to it by or under this Act and in particular, such functions and powers include the function and power to -
 - (*a*) recommend to the Central Government the norms for processes and energy consumption standards required to be notified under clause (a) of section 14 ;
 - (b) recommend to the Central Government the particulars required to be displayed on label on equipment or on appliances and manner of their display under clause (d) of section 14;

- (c) recommend to the Central Government for notifying any user or class of users of energy as a designated consumer under clause (e) of section 14;
- (*d*) take suitable steps to prescribe guidelines for energy conservation building codes under clause (p) of section 14;
- (e) take all measures necessary to create awareness and disseminate information for efficient use of energy and its conservation;
- (*f*) arrange and organize training of personnel and specialists in the techniques for efficient use of energy and its conservation;

(g) strengthen consultancy services in the field of energy conservation;

- (h) promote research and development in the field of energy conservation;
- (*i*) develop testing and certification procedure and promote testing facilities for certification and testing for energy consumption of equipment and appliances;
- (*j*) formulate and facilitate implementation of pilot projects and demonstration projects for promotion of efficient use of energy and its conservation;
- (k) promote use of energy efficient processes, equipment, devices and systems;
- (*l*) promote innovative financing of energy efficiency projects;
- (*m*)give financial assistance to institutions for promoting efficient use of energy and its conservation;
- (*n*) levy fee, as may be determined by regulations, for services provided for promoting efficient use of energy and its conservation;
- (o) maintain a list of accredited energy auditors as may be specified by regulations;
- (*p*) specify, by regulations, qualifications for the accredited energy auditors;
- (q) specify, by regulations, the manner and intervals of time in which the energy audit shall be conducted ;
- (*r*) specify, by regulations, certification procedures for energy managers to be designated or appointed by designated consumers;
- (*s*) prepare educational curriculum on efficient use of energy and its conservation for educational institutions, boards, universities or autonomous bodies and coordinate with them for inclusion of such curriculum in their syllabus;
- (*t*) implement international co-operation programmes relating to efficient use of energy and its conservation as may be assigned to it by the Central Government;
- (*u*) perform such other functions as may be prescribed.

CHAPTER V, SECTION 14

Power of Central Government to Facilitate and Enforce Efficient use of Energy and its Conservation

The Central Government may, by notification, in consultation with the Bureau, -

- (a) specify the norms for processes and energy consumption standards for any equipment, appliances which consumes, generates, transmits or supplies energy;
- (b) specify equipment or appliance or class of equipments or appliances, as the case may be, for the purposes of this Act;
- (c) prohibit manufacture or sale or purchase or import of equipment or appliance specified under clause (b) unless such equipment or appliances conforms to energy consumption standards;

Provided that no notification prohibiting manufacture or sale or purchase or import or equipment or appliance shall be issued within two years from the date of notification issued under clause (a) of this section;

- (d) direct display of such particulars on label on equipment or on appliance specified under clause (b) and in such manner as may be specified by regulations;
- (e) specify, having regarding to the intensity or quantity of energy consumed and the amount of investment required for switching over to energy efficient equipments and capacity or industry to invest in it and availability of the energy efficient machinery and equipment required by the industry, any user or class of users of energy as a designated consumer for the purposes of this Act;
- (f) alter the list of Energy Intensive Industries specified in the Schedule;
- (g) establish and prescribe such energy consumption norms and standards for designated consumers as it may consider necessary:
 Provided that the Central Government may prescribe different norms and standards for different designated consumers having regard to such factors as may be prescribed;
- (h) direct, having regard to quantity of energy consumed or the norms and standards of energy consumption specified under clause (a) the energy intensive industries specified in the Schedule to get energy audit conducted by an accredited energy auditor in such manner and intervals of time as may be specified by regulations;
- (*i*) direct, if considered necessary for efficient use of energy and its conservation, any designated consumer to get energy audit conducted by an accredited energy auditor;
- (*j*) specify the matters to be included for the purposes of inspection under sub-section (2) of section 17;
- (*k*) direct any designated consumer to furnish to the designated agency, in such form and manner and within such period, as may be prescribed, the information with regard to the energy consumed and action taken on the recommendation of the accredited energy auditor;
- (*l*) direct any designated consumer to designate or appoint energy manger in charge of activities for efficient use of energy and its conservation and submit a report, in the form and manner as may be prescribed, on the status of energy consumption at the end of the every financial year to designated agency;
- (*m*) prescribe minimum qualification for energy managers to be designated or appointed under clause (l);
- (*n*) direct every designated consumer to comply with energy consumption norms and standards;
- (*o*) direct any designated consumer, who does not fulfil the energy consumption norms and standards prescribed under clause (g), to prepare a scheme for efficient use of energy and its conservation and implement such scheme keeping in view of the economic viability of the investment in such form and manner as may be prescribed;
- (*p*) prescribe energy conservation building codes for efficient use of energy and its conservation in the building or building complex;
- (q) amend the energy conservation building codes to suit the regional and local climatic conditions;
- (*r*) direct every owner or occupier of the building or building complex, being a designated consumer to comply with the provisions of energy conservation building codes for efficient use of energy and its conservation;

- (s) direct, any designated consumer referred to in clause (r), if considered necessary, for efficient use of energy and its conservation in his building to get energy audit conducted in respect of such building by an accredited energy auditor in such manner and intervals of time as may be specified by regulations;
- (*t*) take all measures necessary to create awareness and disseminate information for efficient use of energy and its conservation;
- (*u*) arrange and organise training of personnel and specialists in the techniques for efficient use of energy and its conservation;
- (v) take steps to encourage preferential treatment for use of energy efficient equipment or appliances: Provided that the powers under clauses (p) and (s) shall be exercised in consultation with the concerned State.

CHAPTER VI, SECTION 15

Power Of State Government To Facilitate And Enforce Efficient Use Of Energy And Its Conservation

The State Government may, by notification, in consultation with the Bureau -

- (a) amend the energy conservation building codes to suit the regional and local climatic conditions and may, by rules made by it, specify and notify energy conservation building codes with respect to use of energy in the buildings;
- (*b*) direct every owner or occupier of a building or building complex being a designated consumer to comply with the provisions of the energy conservation building codes;
- (c) direct, if considered necessary for efficient use of energy and its conservation, any designated consumer referred to in clause (b) to get energy audit conducted by an accredited energy auditor in such manner and at such intervals of time as may be specified by regulations;
- (d) designate any agency as designated agency to coordinate, regulate and enforce provisions of this Act within the State;
- *(e)* take all measures necessary to create awareness and disseminate information for efficient use of energy and its conservation;
- (*f*) arrange and organise training of personnel and specialists in the techniques for efficient use of energy and its conservation;
- (g) take steps to encourage preferential treatment for use of energy efficient equipment or appliances;
- (*h*) direct, any designated consumer to furnish to the designated agency, in such form and manner and within such period as may be specified by rules made by it, information with regard to the energy consumed by such consumer;
- (*i*) specify the matters to be included for the purposes of inspection under sub-section (2) of section 17;
- (1) The State Government shall constitute a Fund to be called the State Energy Conservation Fund for the purposes of promotion of efficient use of energy and its conservation within the State.
- (2) To the Fund shall be credited all grants and loans that may be made by the State Government or, Central Government or any other organization or individual for the purposes of this Act.

- (3) The Fund shall be applied for meeting the expenses incurred for implementing the provisions of this Act.
- (4) The Fund created under sub-section (1) shall be administered by such persons or any authority and in such manner as may be specified in the rules made by the State Government.
- (1) The designated agency may appoint, after the expiry of five years from the date of commencement of this Act, as many inspecting officers as may be necessary for the purpose of ensuring compliance with energy consumption standard specified under clause (a) of section 14 or ensure display of particulars on label on equipment or appliances specified under clause (b) of section 14 or for the purpose of performing such other functions as may be assigned to them.
- (2) Subject to any rules made under this Act, an inspecting officer shall have power to -
- (a) inspect any operation carried on or in connection with the equipment or appliance specified under clause (b) of section 14 or in respect of which energy standards under clause (a) of section 14 have been specified;
- (*b*) enter any place of designated consumer at which the energy is used for any activity and may require any proprietor, employee, director, manager or secretary or any other person who may be attending in any manner to or helping in, carrying on any activity with the help of energy -
- (i) to afford him necessary facility to inspect -
- (A) any equipment or appliance as he may require and which may be available at such place;
- (B) any production process to ascertain the energy consumption norms and standards;
- (ii) to make an inventory of stock of any equipment or appliance checked or verified by him;
- (*iii*) to record the statement of any person which may be useful for, or relevant to, for efficient use of energy and its conservation under this Act.
- (3) An inspecting officer may enter any place of designated consumer -
- (a) where any activity with the help of energy is carried on; and
- (b) where any equipment or appliance notified under clause (b) of section 14 has been kept, during the hours at which such places is open for production or conduct of business connected therewith.
- (4) An inspecting officer acting under this section shall, on no account, remove or cause to be removed from the place wherein he has entered, any equipment or appliance or books of accounts or other documents.

The Central Government or the State Government may, in the exercise of its powers and performance of its functions under this Act and for efficient use of energy and its conservation, issue such directions in writing as it deems fit for the purposes of this Act to any person, officer, authority or any designated consumer and such person, officer or authority or any designated consumer shall be bound to comply with such directions.

Explanation - For the avoidance of doubts, it is hereby declared that the power to issue directions under this section includes the power to direct -

- (a) regulation of norms for process and energy consumption standards in any industry or building or building complex; or
- (b) regulation of the energy consumption standards for equipment and appliances.

CHAPTER VIII, SECTION 26

Penalties and Adjudication

(1) If any person fails to comply with the provision of clause (c) or the clause (d) or clause (h) or clause (i) or clause (k) or clause (l) or clause (n) or clause (r) or clause (s) of section 14 or clause (b) or clause (c) or clause (h) of section 15, he shall be liable to a penalty which shall not exceed ten thousand rupees for each such failures and, in the case of continuing failures, with an additional penalty which may extend to one thousand rupees for every day during which such failures continues:

Provided that no person shall be liable to pay penalty within five years from the date of commencement of this Act.

- (2) Any amount payable under this section, if not paid, may be recovered as if it were an arrear of land revenue.
- (1) For the purpose of adjudging section 26, the State Commission shall appoint any of its members to be an adjudicating officer for holding an inquiry in such manner as may be prescribed by the Central Government, after giving any person concerned a reasonable opportunity of being heard for the purpose of imposing any penalty.(2) While holding an inquiry the adjudicating officer shall have power to summon and enforce the attendance of any person acquainted with the facts and circumstances of the case of give evidence or produce any document which in the opinion of the adjudicating officer, may be useful for or relevant to the subject-matter of the inquiry, and if, on such inquiry, he is satisfied that the person has failed to comply with the provisions of any of the clauses of the sections specified in section 26, he may impose such penalty as he thinks fit in accordance with the provisions of any of those clauses of that section:

Provided that where a State Commission has not been established in a State, the Government of that State shall appoint any of its officer not below the rank equivalent to a Secretary dealing with legal affairs in that State to be an adjudicating officer for the purposes of this section and such officer shall cease to be an adjudicating officer immediately on the appointment of an adjudicating officer by the State Commission on its establishment in that State: Provided further that where an adjudicating officer appointed by a State Government ceased to be an adjudicating officer, he shall transfer to the adjudicating officer appointed by the State Commission all matters being adjudicated by him and thereafter the adjudicating officer appointed by the State Commission shall adjudicate the penalties on such matters.

While adjudicating the quantum of penalty under section 26, the adjudicating officer shall have due regard to the following factors, namely:-

- (*a*) the amount of disproportionate gain or unfair advantage, wherever quantifiable, made as a result of the default;
- (b) the repetitive nature of the default.No civil court shall have jurisdiction to entertain any suit or proceeding in respect of any matter which an adjudicating officer appointed under this Act or the Appellate Tribunal is empowered by or under this Act to determine and no injunction shall be granted by any court or other authority in respect of any action taken or to be taken in pursuance of any power conferred by or under this Act.

CHAPTER IX, SECTION 30

Appellate Tribunal for Energy Conservation

The Central Government shall, by notification, establish an Appellate Tribunal to be known as the Appellate Tribunal for Energy Conservation to hear appeals against the orders of the adjudicating officer or the Central Government or the State Government or any other authority under this Act

CHAPTER X,

Miscellaneous

SECTION 61

The provisions of this Act shall not apply to the Ministry or Department of the Central Government dealing with Defence, Atomic Energy or such other similar Ministries or Departments undertakings or Boards or institutions under the control of such Ministries or Departments as may be notified by the Central Government.

THE SCHEDULE

[See section 2 (s)]

List of Energy Intensive Industries and other establishments specified as designated consumers

- 1. Aluminium;
- 2. Fertilizers;
- 3. Iron and Steel;
- 4. Cement;
- 5. Pulp and paper;
- 6. Chlor Akali;
- 7. Sugar;
- 8. Textile;
- 9. Chemicals;
- 10. Railways;
- 11. Port Trust;
- 12. Transport Sector (industries and services);
- 13. Petrochemicals, Gas Crackers, Naphtha Crackers and Petroleum Refineries;
- 14. Thermal Power Stations, hydel power stations, electricity transmission companies and distribution companies;
- 15. Commercial buildings or establishments;

Full version of this act may be obtained from www.bee-india.nic.in

	QUESTIONS
1.	Define the following terms with three examples for each -
	a) Primary and Secondary Energy.b) Commercial and Non-commercial Energy.c) Renewable and Non-renewable Energy
2.	In terms of coal reserve India's position in the world is
	(a) 10^{th} (b) 17^{th} (c) 4^{th} (d) 26^{th}
3.	The world oil reserves is expected to last another
	(a) 300 years (b) 45 years (c) 600 years (d) forever
4.	Of the total primary energy consumption in India coal accounts for
	(a) 35% (b) 46% (c) 55% (d) 75%
5.	List atleast five States where coal deposits are concentrated in India.
6.	How much % of our Country's oil consumption is imported and how much does it cost (approximately) per year?
7.	Name any three places of oil reserves located in India.
8.	What is the hydro power generation potential available in India, and how much is exploited so far?
9.	What are the % shares of commercial energy consumption in industrial and agricul tural sectors?
10.	How is economic growth linked to energy consumption?
11.	What do you think of strategies required for long-term management of energy in India?
12.	Discuss the subsidies and cross subsidies in oil sector in India.
13.	Write in few words about the various reforms in the energy sector.
14.	Though Plant Respiration and Decomposition release more than ten times CO_2 released by human activities, explain why CO_2 is regarded as a potential threat to the planet.
15.	The contribution of CO_2 to the green house gases is
	(a) 23% (b) 95% (c) 54% (d) 0%
16.	What are the implications of Global warming?
17.	Describe the Greenhouse effect.
18.	The excess of which gas in the atmosphere is the main cause for greenhouse effect?
19.	Name three greenhouse gases. Which one of them produces the maximum green house effect?

20.	What are the major pollutants in burning fossil fuels?
21.	Differentiate between energy conservation and energy efficiency.
22.	What are the benefits for industry through implementing energy efficiency programme?
23.	Why energy conservation is important in the prevailing energy scenario?
24.	The energy conservation act requires that all designated energy consumers should get energy audits conducted by (a) Energy manager (b) accredited energy auditor (c) managing director (d) char tered accountant
25.	Name five designated consumers under the energy conservation act.
26.	Name any three main provisions of the EC act, 2001 as applicable to the designated consumers.
27.	List the incorrect statement and correct the same. The Energy Conservation Act, 2001 requires that a) designated consumer to furnish to the designated agency, in such form and man ner and within such period as may be prescribed the information with regard to the energy purchased and action taken on the recommendation of energy auditor.b)

REFERENCES

- 1. Encyclopedia of Energy McGraw Hill Publication
- 2. Handbook of Energy Engineering, The Fairmont Press Inc Albert Thumann
- 3. Energy Handbook, Von Nostrand Reinhold Company Robert L. Loftness
- 4. Cleaner Production Energy Efficiency Manual for GERIAP, UNEP, Bangkok prepared by National Productivity Council
- 5. Statistics have been drawn from BP Statistical Review of World Energy, June 2003, International Energy Outlook, March 2002, Energy Information administration, Office of integrated analysis and forecasting, US department of energy, Washington
- 6. Indian Planning commission statistics
- 7. The Energy and Resources Institute (TERI)

www.bp.com/centres/energy www.eia.doe.gov www.epa.org