Project code: 2014IE08 Cluster: Varanasi

Baseline Energy Audit Report Varanasi Brick Making Cluster

Prepared forBureau of Energy Efficiency

Baseline Energy	audit report.	Varanasi –	Brick Making	Cluster

Suggested format for citation

TERI. 2015 Baseline Energy Audit Report Varanasi Brick Making Cluster New Delhi: The Energy and Resources Institute. 63pp. [Project Report No. 2014IE08]

For more information

Project Monitoring Cell TERI Darbari Seth Block IHC Complex, Lodhi Road New Delhi – 110 003 India

Tel. 2468 2100 or 2468 2111 E-mail pmc@teri.res.in Fax 2468 2144 or 2468 2145 Web www.teriin.org India +91 • Delhi (0)11

Table of contents

1.0	INTRODUCTION	1
2.0	ABOUT VARANASI BRICK CLUSTER	3
3.0	BRICK KILN - 1	5
	3.1 Basic information	5
	3.2 Details of brick kiln	5
	3.3 Schematic diagram	5
	3.4 Brick production	6
	3.5 Kiln Parameters	6
	3.6 Energy consumption	7
	3.7 Energy balance	7
	3.8 Conclusion	7
4.0	BRICK KILN - 2	9
	4.1 Basic information	9
	4.2 Details of brick kiln	9
	4.3 Schematic diagram	9
	4.4 Brick production	10
	4.5 Kiln Parameters	10
	4.6 Energy consumption	11
	4.7 Energy balance	11
	4.8 Conclusion	12
5.0	BRICK KILN - 3	13
	5.1 Basic information	13
	5.2 Details of brick kiln	13
	5.3 Schematic diagram	13
	5.4 Brick production	14
	5.5 Kiln Parameters	14
	5.6 Energy consumption	15
	5.7 Energy balance	15
	5.8 Conclusion	16
6.0	BRICK KILN - 4	17
	6.1 Basic information	17
	6.2 Details of brick kiln	17
	6.3 Schematic Diagram	17
	6.4 Brick production	18
	6.5 Kiln parameters	18
	6.6 Energy consumption	19
	6.7 Energy balance	19

	6.8 Conclusion	20
7.0	BRICK KILN - 5	21
	7.1 Basic information	21
	7.2 Details of brick kiln	21
	7.3 Schematic diagram	21
	7.4 Brick production	22
	7.5 Kiln parameters	22
	7.6 Energy consumption	23
	7.7 Energy balance	23
	7.8 Conclusion	23
8.0	BRICK KILN - 6	25
	8.1 Basic information	25
	8.2 Details of brick kiln	25
	8.3 Schematic diagram	25
	8.4 Brick production	26
	8.5 Kiln Parameters	26
	8.6 Energy consumption	27
	8.7 Energy balance	27
	8.8 Conclusion	28
9.0	BRICK KILN - 7	29
	9.1 Basic information	29
	9.2 Details of brick kiln	29
	9.3 Schematic diagram	29
	9.4 Brick production	30
	9.5 Kiln parameters	30
	9.6 Energy consumption	31
	9.7 Energy balance	31
	9.8 Conclusion	31
10.0	BRICK KILN - 8	33
	10.1 Basic information	33
	10.2 Details of brick kiln	33
	10.3 Schematic diagram of kiln	33
	10.4 Brick production	34
	10.5 Kiln parameters	34
	10.6 Energy consumption	35
	10.7 Energy balance	35
	10.8 Conclusion	36
11.0	BRICK KILN - 9	37
	11.1 Basic information	37

	11.2 Details of brick kiln	37
	11.3 Schematic diagram	37
	11.4 Brick production	38
	11.5 Kiln Parameters	38
	11.6 Energy consumption	39
	11.7 Energy balance	39
	11.8 Conclusion	40
12.0	BRICK KILN - 10	41
	12.1 Basic information	41
	12.2 Details of brick kiln	41
	12.3 Schematic diagram	41
	12.4 Brick production	42
	12.5 Kiln parameters	42
	12.6 Energy consumption	43
	12.7 Energy balance	43
	12.8 Conclusion	44
Anne	exure 3	45
Anne	exure 4	47
Anne	exure 5	49
Anne	exure 6	51
Anne	exure 7	53
Anne	exure 8	55
Anne	exure 9	57
Anne	exure 10	59
Anne	exure 11	61
Anne	exure 12	63

1.0 Introduction

Under the 11th Five Year Plan, the Bureau of Energy Efficiency (BEE) had carried out diagnostic studies in 25 SME clusters and prepared cluster specific manuals covering energy efficiency, process and technology, best practices, case studies, etc. These clusters represents various energy intensive industry sub sectors like ceramic, textile, paper, sea food, rice mills etc. The studies have provided information on technology status, best operating practices, gaps in skills and knowledge, energy conservation opportunities, energy saving potential, etc. for each of the intervening sub-sector. Detailed project reports (DPRs) were also prepared for the identified technological options. In the 12th Five Year plan, BEE is implementing National Program on Energy Efficiency. The major activities covered under the program include:

- i. Sector-specific approach for energy efficiency and technology up-gradation through facilitation of implementation of DPRs on energy efficient technologies
- ii. Technical assistance and capacity building of stakeholders
- iii. Energy mapping of SME

Varanasi brick cluster is one of the clusters covered under the study. Zig-zag technology is one of the technology options identified to enhance energy efficiency of brick making units in the cluster. The Energy and Resources Institute (TERI) has been entrusted by BEE in implementing natural draft zigzag firing technology in the identified units in the Varanasi brick cluster.

2.0 About Varanasi brick cluster

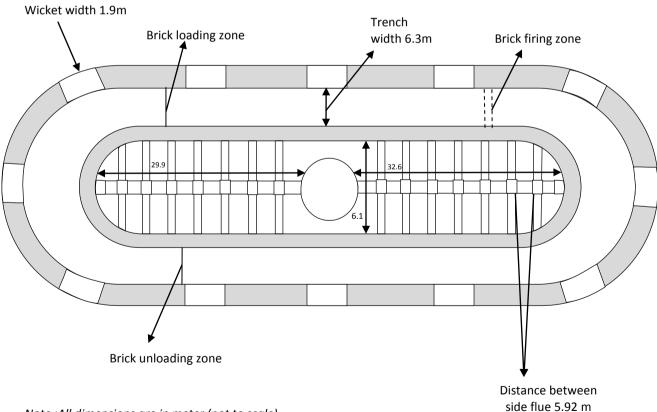
In Varanasi brick cluster, there are about 300 brick kiln units. Some of the major sub-clusters in Varanasi includes Mohan sarai, Munari, Raichandpur, Haruhua and Sarnath. Int Nirmata Parishad (INP) represents the cluster level industry association. The cluster predominantly uses hand-moulding for green brick making and Bull's Trench Kilns (BTKs) for brick firing. It is estimated that about 40 brick kiln units in the cluster have adopted zig-zag technology.

The details of brick making units participating in the project are provided in table 2.0.

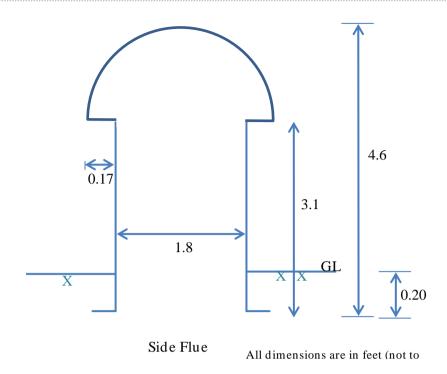
Table 2.0: Contact details of brick making units

S. No.	Name of the brick kiln	Contact Person
1	M/s Singh Int Bhatta, village Kharupur, Varanasi	Mr. Parikshit Singh
2	M/s R.B. Company, village Bandaha, Varanasi	Mr. Ramashraya Singh
3	M/s Khiladi IntBhatta, village ShainaKalan, Varanasi	Mr. MotiYadav
4	M/s Swarup Int Udyog, village Cholapur, Varanasi	Mr. Rajesh Singh
5	M/s Asim brick field, village Undi, Varanasi	Mr. Kamlesh Narayan Singh
6	M/s Shyam Int Udyog, village Jaipar, Varanasi	Mr. Inder Pal Singh
7	M/s Shail Int Bhatta, village Raichandpur, Varanasi	Mr. Chandershekhar Singh
8	M/s Sahara Brick Industry, village Sultanpur, Varanasi	Mr. VirenderTiwari
9	M/s Dilip Kumar, village Todarpur, Mohan sarai,	Mr. Dilip Kumar Jethani
	Varanasi	
10	M/s B.S. Enterprises, village GosainpurMahauan,	Mr. AkshyawarYadav
	Cholapur, Varanasi	

3.0 Brick Kiln - 1


3.1 Basic information

Name of the kiln:	M/s Singh Int Bhatta,
Location of kiln:	Village Kharupur, Varanasi
Contact Person	Mr. Parikshit Singh
Contact No.	9793840001


3.2 Details of brick kiln

Type of brick kiln	Oval shaped BTK
Green brick molding process	Hand molding
Production Capacity	7 lakh per circuit
Size of trench	
- Width of trench	6.3 meter
- Height of trench	2.4 meter

3.3 Schematic diagram

Note :All dimensions are in meter (not to scale)

Number of rows in each line	20
Number of columns in each line	19
Number of bricks per line	3200
Number of lines fired per day	8 – 9
Average Size of green brick (mm)	236 x 113 x70
Average weight of green brick (kg)	3.0
Average Size of fired brick (mm)	236 x 111 x69
Average weight of fired brick (kg)	2.9

3.5 Kiln Parameters

Parameter	Range
Ambient temperature (°C)	37.5 - 40.4
Flue gas temperature (°C)	54.8 – 61.6
O ₂ (%)	14.6 - 21.7
CO (ppm)	70 - 703
Firing Temperature(°C)	995 - 1038
Feed hole cover temperature (°C)	395 - 456
Kiln surface temperature	
Preheating zone (°C)	120 – 131.3
Firing zone (°C)	93.5 – 112.7
Cooling zone (°C)	67 - 86

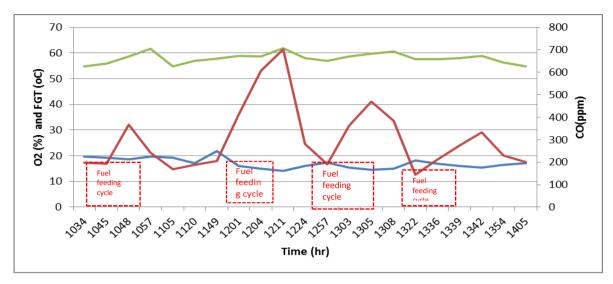


Figure 3.0: Variation of kiln parameters during kiln operation

3.6 Energy consumption

Type of fuel used	Coal
Coal consumption (kg/day)	6552
Specific Energy Consumption (MJ/ kg-fired brick)	1.59

3.7 Energy balance

Component	Energy consumption (MJ/ton of fired clay)
Heat required for removal of mechanically held water in green bricks	29
Surface heat loss from kiln (top surface and side walls)	404
Other heat components*	1042
Heat loss in flue gases	77
Heat loss due to partial conversion to CO	18
Sensible heat loss in unloaded bricks	15
Total	1586

^{*} Heat required for irreversible chemical reaction and losses such as trench bottom, periodic heating and cooling of kiln structure and due to un-burnt carbon in ash

3.8 Conclusion

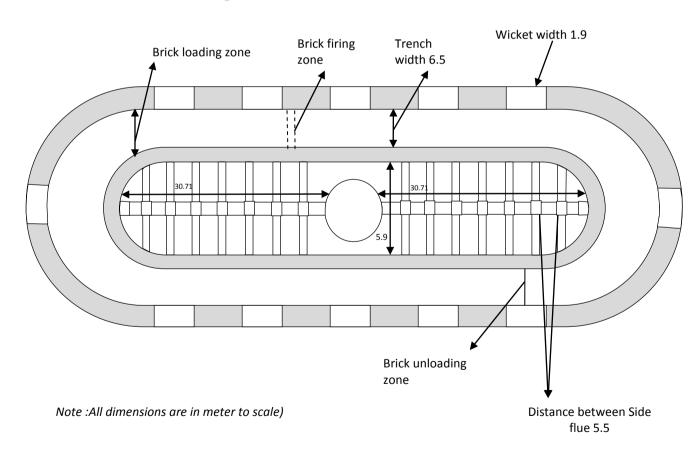
The specific energy consumption (SEC) was observed to be high. Some of the factors that may attribute to high SEC level of the kiln include the following:

a) The kiln was not being operated efficiently. The kiln insulation was not proper. The temperature of the feedhole covers was in the range of $396 - 456^{\circ}$ C. Similarly, thickness of rabbish at the kiln top was about 3.5 inches resulting in high top surface temperature in the pre-heating and firing zone in the range of $94 - 131^{\circ}$ C.

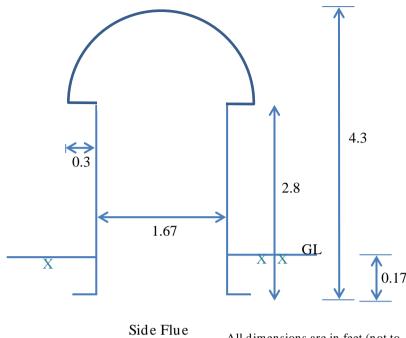
- b) Fuel feeding practices were observed to be poor. The fuel feeding frequency was about 55 minutes. Generally for coal fired BTKs the frequency of feeding should be about 30 minutes. The length of firing zone was too small as the firing was being carried out in two lines only against the conventional 3 lines. Similarly the length of cooling zone was very high. This might be one of the reasons for incomplete combustion of coal resulting in high percentage of un-burnt carbon in ash. The higher level of O₂ between two fuel feeding (14 to 21%) indicates either leakage in the kiln or less amount of fuel feedings resulting in higher fuel combustion.
- c) Large variation of O₂ and CO level as shown in figure 3.0 indicates poor mixing of air with fuel and leakages in the kiln leading to high fuel consumption.

The acceptance letter from the unit owner regarding baseline energy audit is attached as Annexure 3.

4.0 Brick Kiln - 2


4.1 Basic information

Name of the kiln:	M/s R.B. Company,
Location of kiln:	Village Bandheya, Varanasi
Contact Person	Mr. Rameshwar Singh
Contact No.	9452731441


4.2 Details of brick kiln

Type of brick kiln	Oval shaped BTK
Green brick molding process	Hand molding
Production Capacity	7.5 lakh per circuit
Size of trench	
- Width of trench	6.5 meter
- Height of trench	2.5 meter

4.3 Schematic diagram

All dimensions are in feet (not to

Number of rows in each line	21
Number of columns in each line	19
Number of bricks per line	4000
Number of lines fired per day	7 - 8
Average Size of green brick (mm)	230 x 110 x 70
Average Weight of green brick (kg)	3.0
Average Size of fired brick (mm)	228 x 110 x 70
Average Weight of fired brick (kg)	3.0

4.5 Kiln Parameters

Parameter	Range
Ambient temperature (°C)	42.3 - 52.4
Flue gas temperature (°C)	59.1 – 94.7
O ₂ (%)	11.9 – 18.1
CO (ppm)	202 - 2499
Firing Temperature (°C)	920 - 955
Feed hole cover temperature (°C)	283 - 330
Kiln surface temperature	
Preheating zone (°C)	66
Firing zone (°C)	83.6 – 84.7
Cooling zone (°C)	119.2 – 134.4

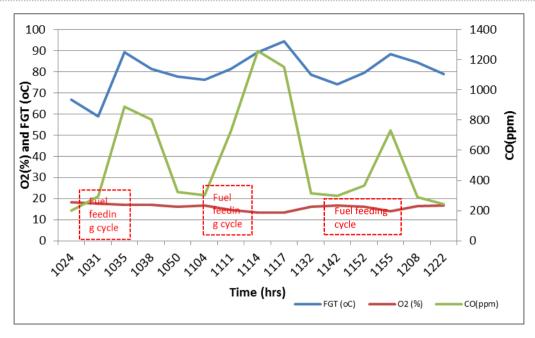


Figure 4.0: Variation in key parameters during kiln operation

4.6 Energy consumption

Type of fuel used	Coal
Coal consumption (kg/day)	4400
Specific Energy Consumption (MJ/ kg-fired brick)	1.43

4.7 Energy balance

	Energy consumption
Component	(MJ/ton of fired clay)
Heat required for removal of mechanically held	146
water in green bricks	
Surface heat loss from kiln (top surface and side	303
walls)	
Other heat components*	892
Heat loss in flue gases	67
Heat loss due to partial conversion to CO	15
Sensible heat loss in unloaded bricks	11
Total	1434

^{*} Heat required for irreversible chemical reaction and losses such as trench bottom, periodic heating and cooling of kiln structure and due to un-burnt carbon in ash

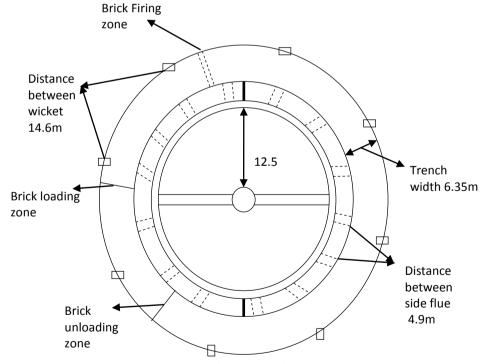
4.8 Conclusion

The specific energy consumption (SEC) was observed to be high. Some of the factors that may attribute to high SEC level of the kiln include the following:

- a) The kiln was not being operated efficiently. The temperature of the feedhole covers was in the range of 283 330°C. Fuel feeding practices were observed to be poor. The fuel feeding frequency was about 45 minutes. Generally for coal fired BTKs the frequency of feeding should be about 30 minutes. The length of firing zone was too small as the firing was being carried out in two lines only against the conventional 3 lines. Similarly the length of cooling zone and pre-heating zones were not proper. The higher level of O₂ between two fuel feeding (13 to 18%) indicates either leakage in the kiln or less amount of fuel feedings resulting in higher fuel combustion.
- b) Large variation of O₂ and CO level as shown in figure 4.0 indicates poor mixing of air with fuel and leakages in the kiln leading to high fuel consumption.

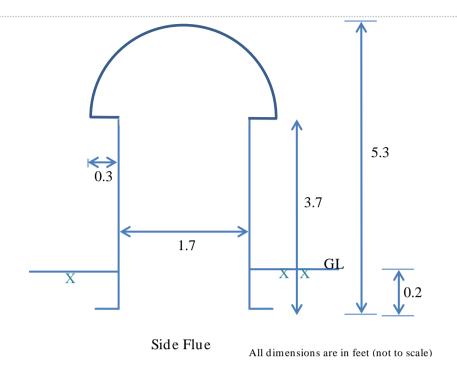
The acceptance letter from the unit owner regarding baseline energy audit is attached as Annexure 4.

5.0 Brick kiln - 3


5.1 Basic information

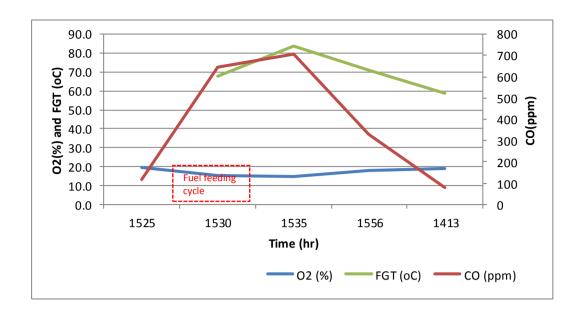
Name of the kiln:	M/s Khiladi Int Bhatta,
Location of kiln:	Village Ravana Kalan, Munari , Varanasi
Contact Person	Mr. Moti Yadav
Contact No.	9451572064

5.2 Details of brick kiln


Type of brick kiln	Circular shaped BTK
Green brick molding process	Hand molding
Production Capacity	5.0 lakh per circuit
Size of trench	
- Width of trench	6.3 meter
- Height of trench	2.2 meter

5.3 Schematic diagram

Note :All dimensions are in meter(not to scale)



Number of rows in each line	18
Number of columns in each line	22
Number of bricks per line	3300
Number of lines fired per day	8 - 9
Average Size of green brick (mm)	234 x 112 x 77
Average Weight of green brick (kg)	3.1
Average Size of fired brick (mm)	231 x 110 x 72
Average Weight of fired brick (kg)	2.9

5.5 Kiln Parameters

Parameter	Range
Ambient temperature (°C)	35 - 38.9
Flue gas temperature (°C)	47.5 – 50.2
O ₂ (%)	17.2 - 18.3
CO(ppm)	115 - 331
Firing Temperature(°C)	975 - 998
Feed hole cover temperature (°C)	398 - 425
Kiln surface temperature	
Preheating zone (°C)	81.7 - 87.3
Firing zone (°C)	118.6 – 123.5
Cooling zone (°C)	135.1 – 137.9

5.6 Energy consumption

Type of fuel used	Coal
Coal consumption (kg/day)	3960
Specific Energy Consumption (MJ/ kg-fired brick)	1.39

5.7 Energy balance

Component	Energy consumption (MJ/ton of fired clay)
Heat required for removal of mechanically held	113
water in green bricks	
Surface heat loss from kiln (top surface and side	280
walls)	
Other heat components*	892
Heat loss in flue gases	80
Heat loss due to partial conversion to CO	13
Sensible heat loss in unloaded bricks	16
Total	1393

^{*} Heat required for irreversible chemical reaction and losses such as trench bottom, periodic heating and cooling of kiln structure and due to un-burnt carbon in ash

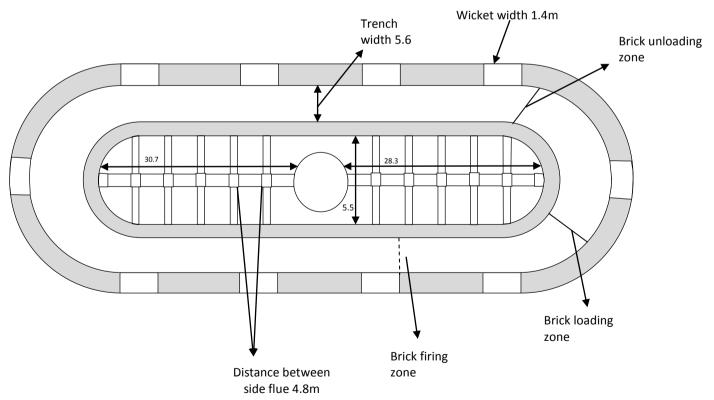
5.8 Conclusion

The specific energy consumption (SEC) was observed to be high. Some of the factors that may attribute to high SEC level of the kiln include the following:

- a) The kiln was not being operated efficiently. The kiln insulation was not proper. The temperature of the feedhole covers was in the range of 398 425°C. Fuel feeding practices were observed to be poor. The fuel feeding frequency was about 45 minutes. Generally for coal fired BTKs the frequency of feeding should be about 30 minutes. The length of firing zone was too small as the firing was being carried out in two lines only against the conventional 3 lines. Similarly the length of cooling zone was very high. This might be one of the reasons for incomplete combustion of coal resulting in high percentage of un-burnt carbon in ash. The higher level of O₂ between two fuel feeding (14 to 19%) indicates either leakage in the kiln or less amount of fuel feedings resulting in higher fuel combustion.
- b) Large variation of O₂ and CO level as shown in figure 5.0 indicates poor mixing of air with fuel and leakages in the kiln leading to high fuel consumption.

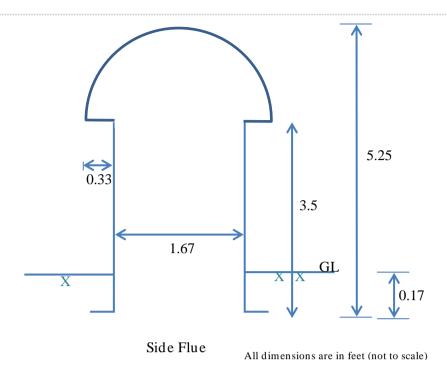
The acceptance letter from the unit owner regarding baseline energy audit is attached as Annexure 5.

6.0 Brick kiln - 4


6.1 Basic information

Name of the kiln:	M/s Swarup Int Udyog
Location of kiln:	Village Gola Cholapur, Varanasi
Contact Person	Mr. Rajesh Singh
Contact No.	9415988553

6.2 Details of brick kiln


Type of brick kiln	Oval shaped BTK
Green brick molding process	Hand molding
Production Capacity	6.0 lakh per circuit
Size of trench	
- Width of trench	5.6 meter
- Height of trench	2.3 meter

6.3 Schematic Diagram

Note: All dimensions are in meter (not to scale)

Number of rows in each line	20
Number of columns in each line	17
Number of bricks per line	2500-3000
Number of lines fired per day	7 - 8
Average Size of green brick (mm)	232 x 109 x 70
Average Weight of green brick (kg)	3.0
Average Size of fired brick (mm)	231 x 109 x 70
Average Weight of fired brick (kg)	2.9

6.5 Kiln parameters

Parameter	Range
Ambient temperature (°C)	39.8 - 44.2
Flue gas temperature (°C)	80.9 - 134.3
O ₂ (%)	18.3-19.5
CO (ppm)	216 - 264
Firing Temperature(°C)	989 - 1005
Feed hole cover temperature (°C)	405 - 428
Kiln surface temperature	
Preheating zone (°C)	131.8 - 143.3
Firing zone (°C)	122.5 - 156.8
Cooling zone (°C)	95.4 – 96.8

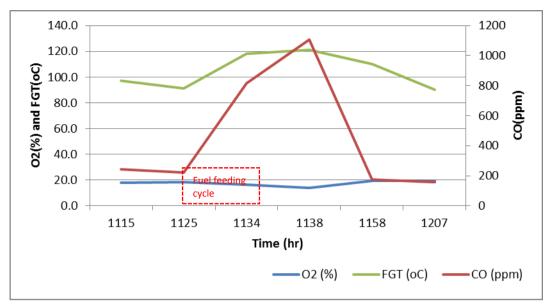


Figure 6.0 Variation in key parameters during kiln operation

6.6 Energy consumption

Type of fuel used	Coal
Coal consumption (kg/day)	3290
Specific Energy Consumption (MJ/ kg-fired	1.64
brick)	

6.7 Energy balance

Component	Energy consumption (MJ/ton of fired clay)
Heat required for removal of mechanically held	59
water in green bricks	
Surface heat loss from kiln (top surface and side	260
walls)	
Other heat components*	1094
Heat loss in flue gases	189
Heat loss due to partial conversion to CO	24
Sensible heat loss in unloaded bricks	11
Total	1635

^{*} Heat required for irreversible chemical reaction and losses such as trench bottom, periodic heating and cooling of kiln structure and due to un-burnt carbon in ash

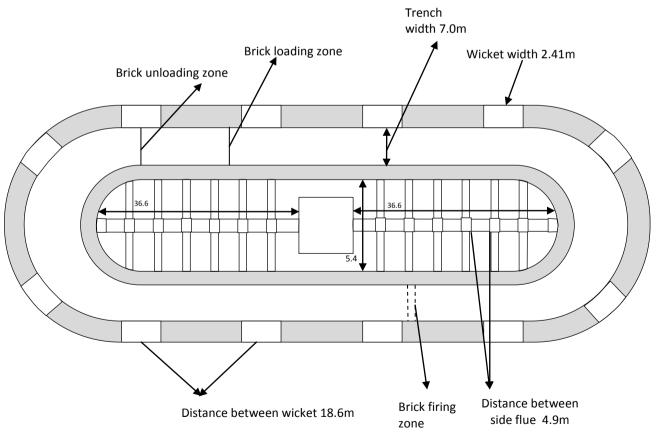
6.8 Conclusion

The specific energy consumption (SEC) was observed to be high. Some of the factors that may attribute to high SEC level of the kiln include the following:

- a) The kiln was not being operated efficiently as there was problem of green brick availability. The kiln walls were poorly maintained and the kiln insulation was not proper. The temperature of the feedhole covers was more than 400°C and temperature at the outside of the wicket was about 91°C, which were quite high.
- b) Fuel feeding practices were observed to be poor. The fuel feeding frequency was more than 60 minutes. Generally for coal fired BTKs the frequency of feeding should be about 30 minutes. The length of firing zone was too small as the firing was being carried out in one line only against the conventional 3 lines. Similarly the length of cooling zone was very high. This might be one of the reasons for incomplete combustion of coal resulting in high percentage of un-burnt carbon in ash. The higher level of O₂ between two fuel feeding (14 to 19%) indicates either leakage in the kiln or less amount of fuel feedings resulting in higher fuel combustion.
- c) Large variation of O₂ and CO level as shown in figure 6.0 indicates poor mixing of air with fuel and leakages in the kiln leading to high fuel consumption.

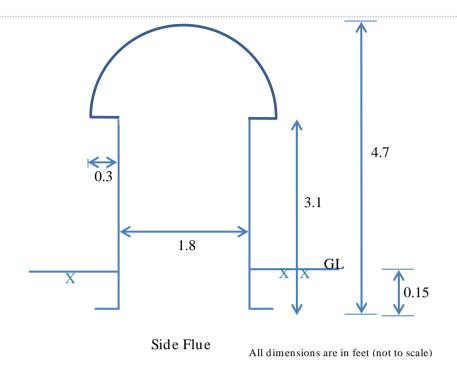
The acceptance letter from the unit owner regarding baseline energy audit is attached as Annexure 6.

7.0 Brick Kiln - 5


7.1 Basic information

Name of the kiln:	M/s Asim Brick Field
Location of kiln:	Village Undi, Varanasi
Contact Person	Mr. Kamlesh Narayan Singh
Contact No.	9415227670

7.2 Details of brick kiln


Type of brick kiln	Oval shaped BTK (using ID fan with Chimney)
Green brick molding process	Hand molding
Production Capacity (lakh per circuit)	9.0
Size of trench	
- Width of trench	7.0 meter
- Height of trench	2.3 meter

7.3 Schematic diagram

Note :All dimensions are in meter (not to scale)

Number of rows in each line	20
Number of columns in each line	20
Number of bricks per line	3300
Number of lines fired per day	8-10
Average Size of green brick (mm)	226 x 111 x 72
Average Weight of green brick (kg)	3.0
Average Size of fired brick (mm)	225 x 109 x 71
Average Weight of fired brick (kg)	2.9

7.5 Kiln parameters

Parameter	Range
Ambient temperature (°C)	31.1 – 32.2
Flue gas temperature (°C)	45.8 – 53.9
O ₂ (%)	15.3 - 17.2
CO (ppm)	426 - 1576
Firing temperature(°C)	919 - 973
Feed hole cover temperature (°C)	156 - 245
Kiln surface temperature	
Preheating zone (°C)	58 - 76.3
Firing zone (°C)	86.2 - 104.3
Cooling zone (°C)	105 - 144.8

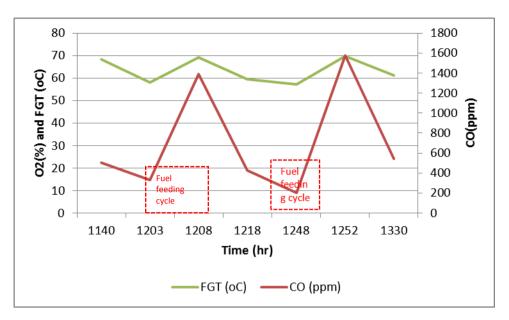


Figure 7.0: Variation in key parameters during kiln operation

7.6 Energy consumption

Type of fuel used	Coal and Sawdust
Coal consumption (kg/day)	4015
Specific Energy Consumption (MJ/ kg-fired brick)	1.36

7.7 Energy balance

Component	Energy consumption (MJ/ton of fired clay)
Heat required for removal of mechanically held water in green bricks	145
Surface heat loss from kiln (top surface and side walls)	228
Other heat components*	894
Heat loss in flue gases	54
Heat loss due to partial conversion to CO	20
Sensible heat loss in unloaded bricks	19
Total	1360

^{*} Heat required for irreversible chemical reaction and losses such as trench bottom, periodic heating and cooling of kiln structure and due to un-burnt carbon in ash

7.8 Conclusion

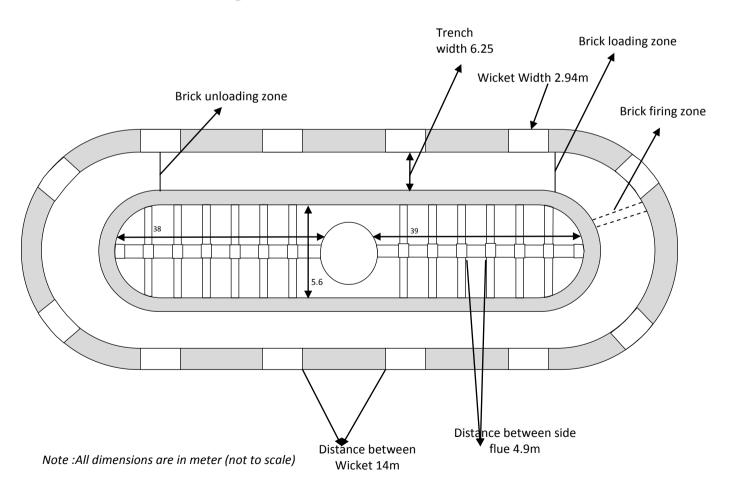
The specific energy consumption (SEC) was observed to be high. Some of the factors that may attribute to high SEC level of the kiln include the following:

a) The kiln insulation was not proper. The temperature of the feedhole covers was in the range of 156 - 245°C and temperature at the outside of the wicket was about 64°C, which were quite high. However, the kiln was using shunt system for side flue operation..

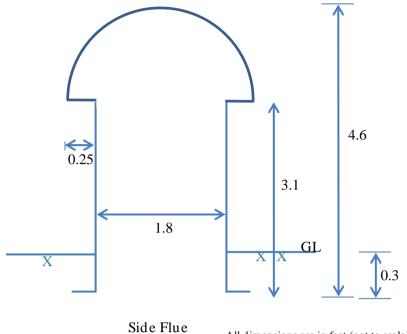
- b) Fuel feeding practices were observed to be poor. The fuel feeding frequency was about 50 minutes. Generally for coal fired BTKs the frequency of feeding should be about 30 minutes. The length of firing zone was too small as the firing was being carried out in two lines only against the conventional 3 lines. Similarly the length of cooling zone was very high. This might be one of the reasons for incomplete combustion of coal resulting in high percentage of un-burnt carbon in ash. The higher level of O₂ between two fuel feeding (14 to 18%) indicates either leakage in the kiln or less amount of fuel feedings resulting in higher fuel combustion.
- c) Large variation of O₂ and CO level as shown in figure 7.0 indicates poor mixing of air with fuel and leakages in the kiln leading to high fuel consumption.

The acceptance letter from the unit owner regarding baseline energy audit is attached as Annexure 7.

8.0 Brick kiln - 6


8.1 Basic information

Name of the kiln:	M/s Shyam Int Udyog
Location of kiln:	Village Jaipar, Varanasi
Contact Person	Mr. Inder Pal Singh
Contact No.	8808070622


8.2 Details of brick kiln

Type of brick kiln	Oval shaped BTK
Green brick molding process	Hand molding
Production Capacity	8.5 lakh per circuit
Size of trench	
- Width of tren	ch 6.25 meter
- Height of tren	ch 2.6 meter

8.3 Schematic diagram

All dimensions are in feet (not to scale)

Number of rows in each line	22
Number of columns in each line	20
Number of bricks per line	3200
Number of lines fired per day	8-10
Average Size of green brick (mm)	232 x 110 x 69
Average Weight of green brick (kg)	3.0
Average Size of fired brick (mm)	230 x 110 x 68
Average Weight of fired brick (kg)	2.9

8.5 Kiln Parameters

Parameter	Range	
Ambient temperature (°C)	32.8 - 36.6	
Flue gas temperature (°C)	60.5 - 96.6	
O ₂ (%)	14.8 - 19.4	
CO(ppm)	58 - 985	
Firing Temperature(°C)	903 - 935	
Feed hole cover temperature (°C)	375 - 397	
Kiln surface temperature		
Preheating zone (°C)	115.9 – 120.5	
Firing zone (°C)	133.8 - 169	
Cooling zone (°C)	151.2 – 179.9	

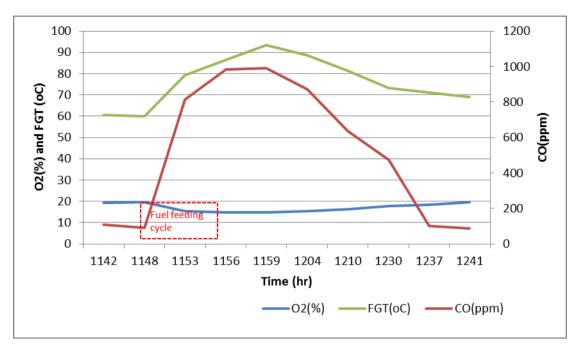


Figure 8.0: Variation in key parameters during kiln operation

8.6 Energy consumption

Type of fuel used	Coal
Coal consumption (kg/day)	2709
Specific Energy Consumption (MJ/ kg-fired brick)	1.57

8.7 Energy balance

Component	Energy consumption (MJ/ton of fired clay)
Heat required for removal of mechanically held water in green bricks	177
Surface heat loss from kiln (top surface and side walls)	324
Other heat components*	911
Heat loss in flue gases	121
Heat loss due to partial conversion to CO	22
Sensible heat loss in unloaded bricks	21
Total	1573

^{*} Heat required for irreversible chemical reaction and losses such as trench bottom, periodic heating and cooling of kiln structure and due to un-burnt carbon in ash

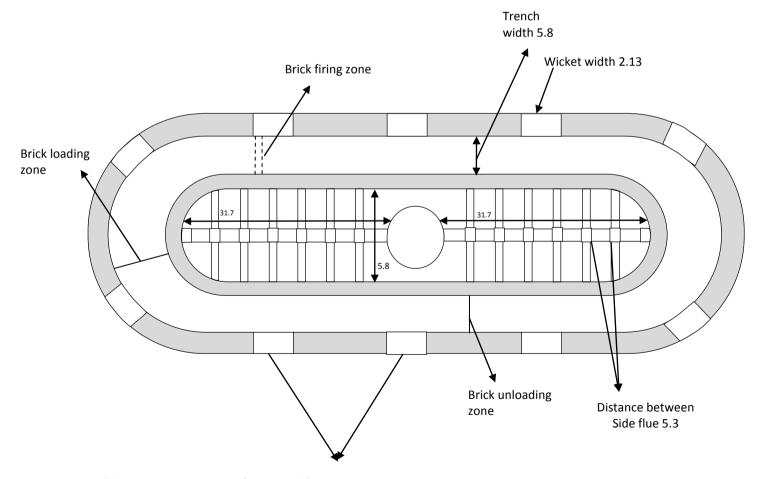
8.8 Conclusion

The specific energy consumption (SEC) was observed to be high. Some of the factors that may attribute to high SEC level of the kiln include the following:

- a) The kiln was not being operated efficiently. The kiln insulation was not proper. The temperature of the top surface was in the range of 130 180°C. The temperature of the feedhole covers was in the range of 375 397°C and temperature at the outside of the wicket (about 74 feet from firing zone in the cooling zone) was about 80°C, which was quite high.
- b) Fuel feeding practices were observed to be poor. The fuel feeding frequency was about 45 minutes. Generally for coal fired BTKs the frequency of feeding should be about 30 minutes. The length of firing zone was too small as the firing was being carried out in two lines only against the conventional 3 lines. Similarly the length of cooling zone was very high. This might be one of the reasons for incomplete combustion of coal resulting in high percentage of un-burnt carbon in ash. The higher level of O₂ between two fuel feeding (14 to 19%) indicates either leakage in the kiln or less amount of fuel feedings resulting in higher fuel combustion.
- c) Large variation of O₂ and CO level as shown in figure 8.0 indicates poor mixing of air with fuel and leakages in the kiln leading to high fuel consumption.

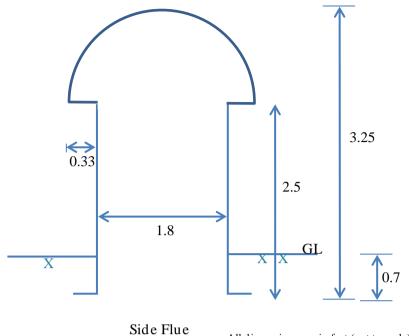
The acceptance letter from the unit owner regarding baseline energy audit is attached as Annexure 8.

9.0 Brick Kiln - 7


9.1 Basic information

Name of the kiln:	M/s Shail Int Bhatta
Location of kiln:	Village Raichandpur, Varanasi
Contact Person	Mr. Chandershekhar Singh
Contact No.	9918400421

9.2 Details of brick kiln


Type of brick kiln	Oval shaped BTK
Production Capacity (lakh per circuit)	6.25
Size of trench	
- Width of trench (m)	5.8
- Height of trench(m)	2.5
Type of fuel used	Coal

9.3 Schematic diagram

Note :All dimensions are in meter(not in scale)

All dimensions are in feet (not to scale)

Number of rows in each line	22
Number of columns in each line	17
Number of bricks per line	3000
Number of lines fired per day	7 - 8
Average Size of green brick (mm)	237 x 112 x 75
Average Weight of green brick (kg)	3.0
Average Size of fired brick (mm)	237 x 112 x 74
Average Weight of fired brick (kg)	2.9

9.5 Kiln parameters

Parameter		Range
Ambient temperature (°C)		32.2 - 37.3
Flue gas temperature (°C)		86.8 - 131
O ₂ (%)		14.1 - 18.7
CO (ppm)		186 - 2280
Firing Temperature(°C)		946 - 1069
Feed hole cover temperature (°C)		310 - 324
Kiln surface temperature		
Preh	eating zone (°C)	59.8 - 63.8
	Firing zone (°C)	97.8 - 102.5
C	ooling zone (°C)	98.7 – 102.9

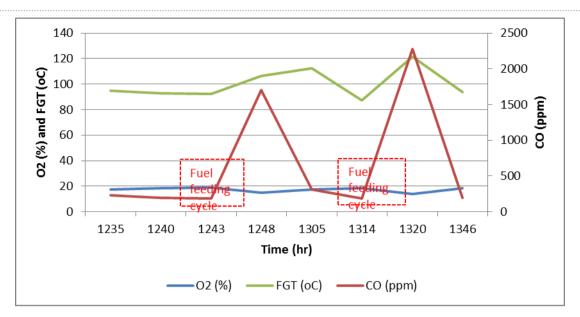


Figure 9.0: Variation of key parameters during kiln operation

9.6 Energy consumption

Type of fuel used	Coal	
Coal consumption (kg/day)	3480	
Specific Energy Consumption (MJ/ kg-fired brick)	1.33	

9.7 Energy balance

Component	Energy consumption (MJ/ton of fired clay)
Heat required for removal of mechanically held water in	117
green bricks	
Surface heat loss from kiln (top surface and side walls)	225
Other heat components*	799
Heat loss in flue gases	147
Heat loss due to partial conversion to CO	27
Sensible heat loss in unloaded bricks	19
Total	1332

^{*} Heat required for irreversible chemical reaction and losses such as trench bottom, periodic heating and cooling of kiln structure and due to un-burnt carbon in ash

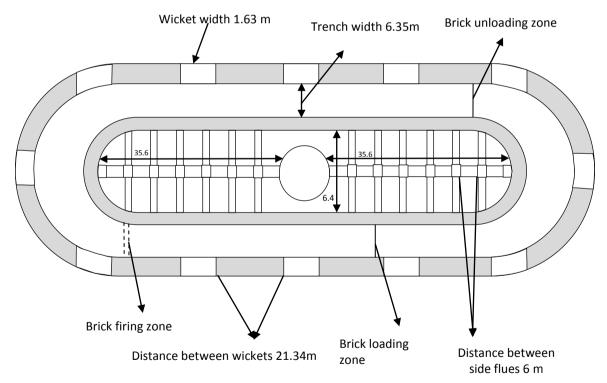
9.8 Conclusion

Compare to other brick kilns monitored in the region, this kiln is being operated efficiently. The shunt system is being used in the kiln and the fuel feeding frequency was also about 30 minutes. Some of the factors that may attribute to high SEC level of the kiln include the following:

- a) The length of cooling zone was relatively more and the temperature of the kiln surface was higher and was in the range of 65 to 103°C.
- b) The length of firing zone was too small as the firing was being carried out in two lines only against the conventional 3 lines. Similarly the length of cooling zone was very high. This might be one of the reasons for incomplete combustion of coal resulting in high percentage of un-burnt carbon in ash. The higher level of O₂ between two fuel feeding (14 to 18%) indicates either leakage in the kiln or less amount of fuel feedings resulting in higher fuel combustion.
- c) Large variation of O₂ and CO level as shown in figure 9.0 indicates poor mixing of air with fuel and leakages in the kiln leading to high fuel consumption.

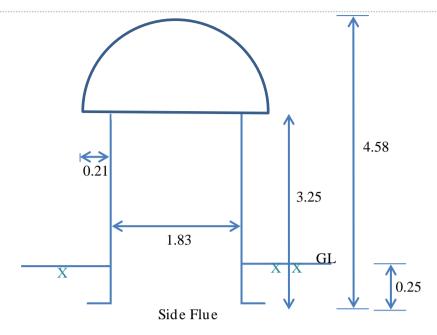
The acceptance letter from the unit owner regarding baseline energy audit is attached as Annexure 9.

10.0 Brick kiln - 8


10.1 Basic information

Name of the kiln	M/s Sahara Brick Industry
Location of kiln	Village Sultanpur, Sarnath, Varanasi
Contact Person	Mr. VirenderTiwari
Contact No.	9415301553

10.2 Details of brick kiln


Type of brick kiln	Oval shaped BTK
Green brick molding process	Hand molding
Brick production capacity	7.0 lakh per circuit
Size of trench	
- Width of trench	6.35 metre
- Height of trench	2.72 etre

10.3 Schematic diagram of kiln

Note :All dimensions are in meter (not to scale)

*All dimensions are in feet (not to scale)

10.4 Brick production

Number of rows in each line	21
Number of columns in each line	19
Number of bricks per line	3800
Number of lines fired per day	7 - 8
Average size of green brick (mm)	235 x 115 x 69
Average weight of green brick (kg)	3.0
Average size of fired brick (mm)	234 x 115 x 69
Average weight of fired brick (kg)	2.9

10.5 Kiln parameters

Parameter	Range
Ambient temperature (°C)	34.6 – 37.7
Flue gas temperature (FGT) (°C)	542 – 770
Oxygen (O_2) (%)	14.9 - 18.5
CO(ppm)	174 - 832
Firing temperature (°C)	999 – 1032
Feed hole cover temperature (°C)	429 - 440
Kiln surface temperature	
Preheating zone (°C)	53-59
Firing zone (°C)	60-63
Cooling zone (°C)	60-65

The key operating parameters covering one fuel feeding cycle is shown in figure 10.0

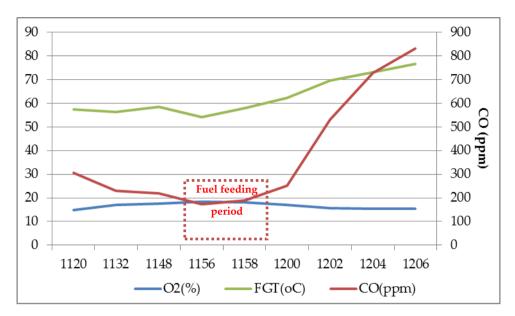


Figure 310.0: Variation in key parameters during kiln operation

10.6 Energy consumption

Type of fuel used	Coal	
Coal consumption (kg/day)	5760	
Specific Energy Consumption (MJ/ kg-fired	1.54	
brick)		

10.7 Energy balance

Component	Energy consumption (MJ/ton of fired clay)
Heat required for removal of mechanically held water in green bricks	94
Surface heat loss from kiln (top surface and side walls)	329
Other heat components*	1050
Heat loss in flue gases	43
Heat loss due to partial conversion to CO	14
Sensible heat loss in unloaded bricks	7
Total	1537

^{*} Heat required for irreversible chemical reaction and losses such as trench bottom, periodic heating and cooling of kiln structure and due to un-burnt carbon in ash

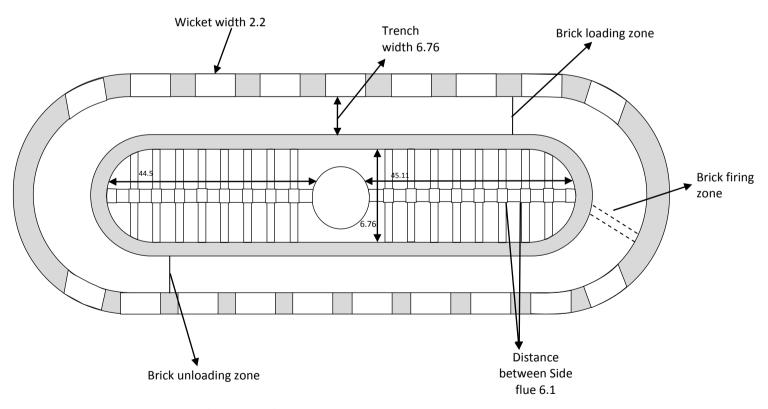
10.8 Conclusion

The specific energy consumption (SEC) was observed to be high. Some of the factors that may attribute to high SEC level of the kiln include the following:

- a) The kiln was not being operated efficiently. The kiln insulation was not proper. The temperature of the feedhole covers was in the range of 429 440°C and temperature at the outside of the wicket was about 90°C, which were quite high.
- b) Fuel feeding practices were observed to be poor. The fuel feeding frequency was about 45 minutes. Generally for coal fired BTKs the frequency of feeding should be about 30 minutes. The length of firing zone was too small as the firing was being carried out in two lines only against the conventional 3 lines. Similarly the length of cooling zone was very high. This might be one of the reasons for incomplete combustion of coal resulting in high percentage of un-burnt carbon in ash. The higher level of O₂ between two fuel feeding (14 to 18%) indicates either leakage in the kiln or less amount of fuel feedings resulting in higher fuel combustion.
- c) Large variation of O₂ and CO level as shown in figure 10.0 indicates poor mixing of air with fuel and leakages in the kiln leading to high fuel consumption.

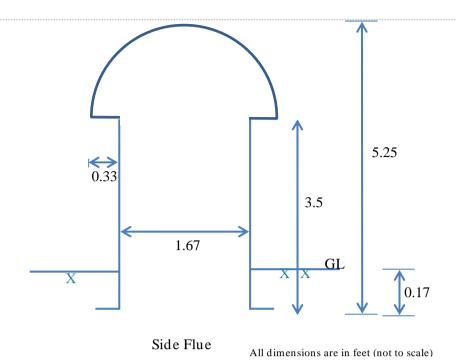
The acceptance letter from the unit owner regarding baseline energy audit is attached as Annexure 10.

11.0 Brick kiln - 9


11.1 Basic information

Name of the kiln:	M/s Dilip Kumar
Location of kiln:	Village Todarpur, Mohan sarai
Contact Person	Mr. Dilip Kumar
Contact No.	9839156613

11.2 Details of brick kiln


Type of brick kiln	Oval shaped BTK
Green brick molding process	Hand molding
Production Capacity	9.5 lakh per circuit
Size of trench	
- Width of trench	6.76 meter
- Height of trench	2.74 meter
Type of fuel used	Coal

11.3 Schematic diagram

Note :All dimensions are in meter (not to scale)

11.4 Brick production

Number of rows in each line	21
Number of columns in each line	19
Number of bricks per line	3500
Number of lines fired per day	9 - 10
Average Size of green brick (mm)	228 x 113 x 72
Average Weight of green brick (kg)	3.0
Average Size of fired brick (mm)	225 x 110 x 72
Average Weight of fired brick (kg)	2.9

11.5 Kiln Parameters

Parameter	Range
Ambient temperature (°C)	35.7 – 44.9
Flue gas temperature (°C)	52.1 - 58.0
Oxygen (O_2) (%)	14.1 - 18.0
CO(ppm)	192 - 850
Firing Temperature(°C)	1024 - 1035
Feed hole cover temperature (°C)	270.8 - 303.6
Kiln surface temperature	
Preheating zone (°C)	76.6 – 108.9
Firing zone (°C)	115.4 - 122.9
Cooling zone (°C)	131.1 – 159.7

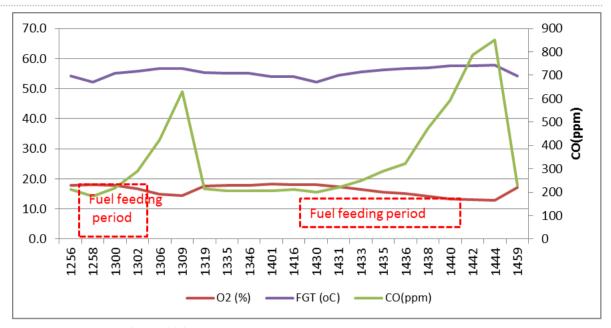


Figure 11.0: Variation in kiln parameters during kiln operation

11.6 Energy consumption

Type of fuel used	Coal
Coal consumption (kg/day)	5376
Specific Energy Consumption (MJ/ kg-fired	1.53
brick)	

11.7 Energy balance

Component	Energy consumption (MJ/ton of fired clay)
Heat required for removal of mechanically held	74
water in green bricks	
Surface heat loss from kiln (top surface and side	274
walls)	
Other heat components*	1112
Heat loss in flue gases	43
Heat loss due to partial conversion to CO	10
Sensible heat loss in unloaded bricks	17
Total	1529

^{*} Heat required for irreversible chemical reaction and losses such as trench bottom, periodic heating and cooling of kiln structure and due to un-burnt carbon in ash

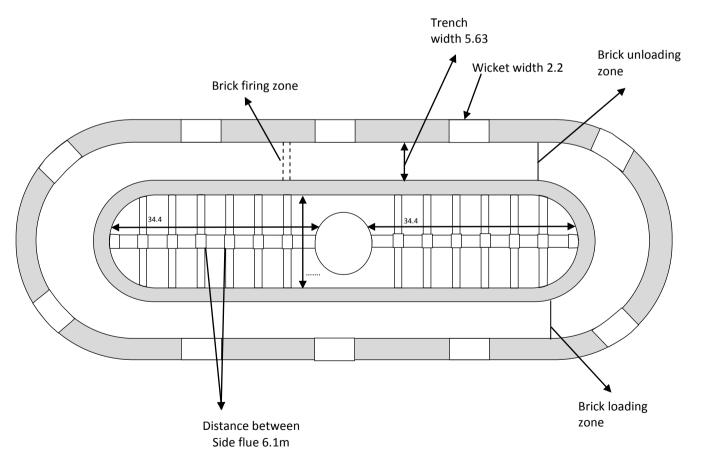
11.8 Conclusion

The specific energy consumption (SEC) was observed to be high. Some of the factors that may attribute to high SEC level of the kiln include the following:

- a) The temperature of the feedhole covers was in the range of 271 -304 $^{\circ}$ C resulting in heat loss from the feed hole covers. Similarly the temperature of the kiln surface was in the range of 80-160 $^{\circ}$ C, which was quite high.
- b) Fuel feeding practices were observed to be poor. The fuel feeding frequency was about 75 minutes. Generally for coal fired BTKs the frequency of feeding should be about 30 minutes. The length of firing zone was too small as the firing was being carried out in two lines only against the conventional 3 lines. Similarly the length of cooling zone was very high. This might be one of the reasons for incomplete combustion of coal resulting in high percentage of un-burnt carbon in ash. The higher level of O₂ between two fuel feeding (12 to 18%) indicates either leakage in the kiln or less amount of fuel feedings resulting in higher fuel combustion.
- c) Large variation of O₂ and CO level as shown in figure 11.0 indicates poor mixing of air with fuel and leakages in the kiln leading to high fuel consumption.

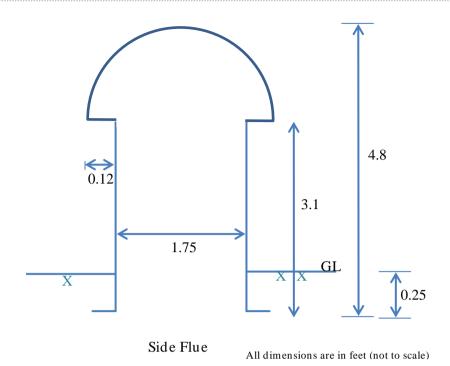
The acceptance letter from the unit owner regarding baseline energy audit is attached as Annexure 11.

12.0 Brick kiln - 10


12.1 Basic information

Name of the kiln	M/s B.S. Enterprises
Location of kiln	Village Gosainpur Mahaon, Varanasi
Contact Person	Mr. Akshyawar yadav
Contact No.	9415302080

12.2 Details of brick kiln


Type of brick kiln		Oval shaped BTK		
Green brick molding process		Hand molding		
Production Capacity		9 lakh per circuit		
Size of trench				
- Wio	th of trench	5.6 meter		
- Hei	tht of trench	2.6 meter		

12.3 Schematic diagram

Note :All dimensions are in meter

12.4 Brick production

Number of rows in each line	22
Number of columns in each line	17
Number of bricks per line	3000
Number of lines fired per day	8-9
Average Size of green brick (mm)	232 x 111 x 71
Average Weight of green brick (kg)	3.0
Average Size of fired brick (mm)	230 x 110 x 70
Average Weight of fired brick (kg)	2.9

12.5 Kiln parameters

Parameter	Range
Ambient temperature (°C)	32.2 – 36.5
Flue gas temperature (°C)	55.3 – 67.2
O ₂ (%)	15.5 – 17.8
CO(ppm)	168 - 1886
Firing temperature (°C)	1007 - 1026
Feed hole cover temperature (°C)	332.6 – 379.6
Kiln surface temperature	
Preheating zone (°C)	85.7 – 110.5
Firing zone (°C)	85.1 – 89.6
Cooling zone (°C)	115.5 – 135.2

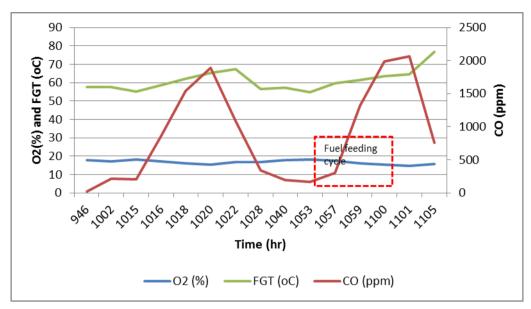


Figure 12.0: Variation of key parameter during kiln operation

12.6 Energy consumption

Type of fuel used	Coal	
Coal consumption (kg/day)	3584	
Specific Energy Consumption (MJ/ kg-fired	1.67	
brick)		

12.7 Energy balance

Component	Energy consumption (MJ/ton of fired clay)
Heat required for removal of mechanically held	101
water in green bricks	
Surface heat loss from kiln (top surface and side	222
walls)	
Other heat components*	1254
Heat loss in flue gases	56
Heat loss due to partial conversion to CO	25
Sensible heat loss in unloaded bricks	17
Total	1674

^{*} Heat required for irreversible chemical reaction and losses such as trench bottom, periodic heating and cooling of kiln structure and due to un-burnt carbon in ash

12.8 Conclusion

The specific energy consumption (SEC) was observed to be high. Some of the factors that may attribute to high SEC level of the kiln include the following:

- ✓ The first round of the kiln was in operation and generally more heat is required during first round to heat up the kiln structure.
- ✓ The kiln was not being operated efficiently. The kiln insulation was not proper. The temperature of the feedhole covers was in the range of 330 380°C and temperature at the outside of the wicket was about 80°C, which were quite high.
- ✓ The fire in the kiln was not running smoothly and in order to control the same the quantity and frequency of fuel feeding was erratic. The higher level of O_2 between two fuel feeding (14 to 18%) indicates either leakage in the kiln or less amount of fuel feedings resulting in higher fuel combustion.
- ✓ Large variation of O_2 and CO level as shown in figure 3.5 indicates poor mixing of air with fuel and leakages in the kiln leading to high fuel consumption.

The acceptance letter from the unit owner regarding baseline energy audit is attached as Annexure 12.

Tin No. 09781906558

M/S SINGH INTT BHATTHA UDYOG

KHARUPUR NARAYANPUR VARANASI

Ref

Date

20.08.2015

TO WHOMSOEVER IT MAY CONCERN

This is to confirm that The Energy and Resources Institute (TERI) had carried out baseline audit in our Kiln M/s Singh Intt Bhattha Udyog, Village Kharupur, Varanasi. We have seen the baseline audit report of our kiln prepared by TERI. We confirm that baseline audit report is acceptable to us.

प्रोप्राइटर सिंह ईट मठ्ठा उद्योग अस्पुर नरायनपुर वाराणसी (PARIKSHIT SINGII)

Proprietor

TIN No. 09181906156 WEF 10/11/08 9415201067 Mob.: 9415205136 9415826251

R. B. COMPANY

BHANDHA, KAITHI VARANASI

20.08.2015

TO WHOMSOEVER IT MAY CONCERN

This is to confirm that The Energy and Resources Institute (TERI) had carried out baseline audit in our Kiln M/s R.B. Company, Village Bhandha, Kaithi, Varanasi. We have seen the baseline audit report of our kiln prepared by TERI. We confirm that baseline audit report is acceptable to us.

TIN No 09881908938

REPORTS \$7 9001

रौला कला, स्त्रनारी-वाराणसी

2000-2015 दिनांक

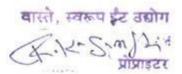
20.08.2015

TO WHOMSOEVER IT MAY CONCERN

This is to confirm that The Energy and Resources Institute (TERI) had carried out baseline audit in our Kiln M/s Khiladi Int Bhatta, Village Raunakalan, Varanasi. We have seen the baseline audit report of our kiln prepared by TERI. We confirm that baseline audit report is acceptable to us.

TIN No. 09383701816

Mob.:


ब्हें उच्चकोटि के ईट के निर्माता व विश्रेता है। मोला मोहाँव (चोलापुर), वाराणसी

पत्नांक.....

विनांक 20-8-2015

TO WHOMSOEVER IT MAY CONCERN

This is to confirm that The Energy and Resources Institute (TERI) had carried out baseline audit in our Kiln M/s Swarup Int Udyog, Village Gola, Cholapur, Varanasi. We have seen the baseline audit report of our kiln prepared by TERI. We confirm that baseline audit report is acceptable to us.

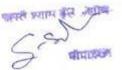
20.08.2015

TO WHOMSOEVER IT MAY CONCERN

This is to confirm that The Energy and Resources Institute (TERI) had carried out baseline audit in our Kiln M/s Asim Brick Field, Village Undi, Varanasi. We have seen the baseline audit report of our kiln prepared by TERI. We confirm that baseline audit report is acceptable to us.

PAN: ACFPS77500 TIN: 09585304550 09415207373 Cell: 09415523200 08933907373

SHYAM INT UDYOG


Office: J-12/19, Dhoopchandi, Jagatganj, Varanasi (U. P.) 221001 Residence: Matiyari, Belawn, Deokali, Kerakat, Jaunpur (U. P.)

Ref. No.:

Date 20.08.2015

TO WHOM:SOEVER IT MAY CONCERN

This is to confirm that The Energy and Resources Institute (TERI) had carried out baseline audit in our Kiln M/s Shyam Int Udyog, Village Jaipar, Varanasi. We have seen the baseline audit report of our kiln prepared by TERI. We confirm that baseline audit report is acceptable to us.

9 18 4004 2 1 रैचन्दपुर—वाराणसी गो. <u>—99364997,75,</u> 9415353947

पत्रांक

दिनांक 20 0 8 2015

20.08.2015

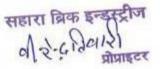
TO WHOMSOEVER IT MAY CONCERN

This is to confirm that The Energy and Resources Institute (TERI) had carried out baseline audit in our Kiln M/s Shail Int Bhatta, Village Raichandpur, Varanasi. We have seen the baseline audit report of our kiln prepared by TERI. We confirm that baseline audit report is acceptable to us.

TIN No. 09881911606S

Mob No. 9415301553 9839615530

Sahara Brick Industries


Vill. Sultanpur, Sarnath, Varanasi

Ref:

Date: 20.08.2015

TO WHOMSOEVER IT MAY CONCERN

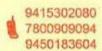
This is to confirm that The Energy and Resources Institute (TERI) had carried out baseline audit in our Kiln M/s Sahara Brick Industries, Village Sultanpur, Sarnath, Varanasi. We have seen the baseline audit report of our kiln prepared by TERI. We confirm that baseline audit report is acceptable to us.

Tin No.09482302399

D63/63 A17 आदर्श नगर महमुरगंज वाराणसी

i o
Id)

TO WHOMSOEVER IT MAY CONCERN


This is to confirm that The Energy and Resources Institute (TERI) had carried out baseline audit in our Kiln M/s Dilip Kumar, Village Todarpur, Varanasi. We have seen the baseline audit report of our kiln prepared by TERI. We confirm that baseline audit report is acceptable to us.

।।श्री गणेशाय नमः॥ ।।सद्गुरु कृपा॥ ।।जय दुर्गा कृपा॥

B.S. Enterprises

Bhatta Place: Gosaipur, Mohav, Varanasi Residence: Ashok Vihar Colony, Pahariya, Phase-II ML15, Varanasi Prop.: Urmila Devi

अत्याधुनिक उपकरणों द्वारा निर्मित उच्च क्वालिटी के ईंटों के लिए सम्पर्क करें।

Ref.:

Date: 20 - 08 - 2015

20.08.2015

TO WHOMSOEVER IT MAY CONCERN

This is to confirm that The Energy and Resources Institute (TERI) had carried out baseline audit in our Kiln M/s B.S. Enterprises, Village Gosaipur, Mohav, Varanasi. We have seen the baseline audit report of our kiln prepared by TERI. We confirm that baseline audit report is acceptable to us.

्यिमिला देवी TIN-09983302087 बी**० एस०** इण्टरप्राइजेज गोसाईपुर, मोहाँब, बोलापुर, वाराणसी

