NATIONAL ENERGY CONSERVATION AWARD - 2016 **AVIATION SECTOR** #### Award for Excellence in Energy Conservation and Management #### **OBJECTIVE** The objective of the scheme is to give national recognition to the management of aviation companies who have made systematic and serious attempts for efficient utilization and conservation of energy during the years 2014-15 and 2015-16. #### THE AWARDS First and second prizes are proposed to be given to the management of nominated aviation company in the form of a trophy with appropriate citation as may be decided by the Ministry of Power. The performance of the nominated aviation company would be judged through a questionnaire (format enclosed) which would be evaluated by an Award Committee. #### **ELIGIBILITY** The scheme is open to all **Aviation Companies**. a) #### **Criteria for Judging Merit** - The Award Committee will decide the recipient of the awards on the basis of outstanding a) achievements and contribution in the field of energy conservation and management. - b) The Award may not necessarily be decided on the basis of only quantitative achievements but also taking into account the various other factors such as innovative techniques adopted for undertaking the activities of Energy Conservation etc. - The members of the Award Committee or their nominees may visit Aviation Companies for c) verification of data supplied, if felt necessary, and it will be obligatory on the part of the management to provide necessary co-operation. The Aviation Companies has to bear all the expenditure in this connection. - d) The Committee's decision would be final and no appeal would be entertained. #### Submission of nomination The filled in questionnaire should reach the office of **Director General Bureau of Energy Efficiency** 4th Floor, Sewa Bhawan, R. K. Puram, New Delhi-110 066 Tel. No.: 011-2617 9699 (5 lines) Fax No.: 011-2617 8328, 2617 8352 Latest by 28th September, 2016 #### Note: - 1. The current year's Questionnaire is a revised version and contains some changes at appropriate places. Therefore, please do not use the last year's Questionnaire while submitting your application for consideration of Award - 2. You may download the Questionnaire from www.beeindia.gov.in. - 3. The filled in application can also be e-mailed at ecaward2016@beenet.in. ecaward16@gmail.com and ecaward2016@rediffmail.com followed by submission of duly signed hard copy by post at BEE office address. # NATIONAL ENERGY CONSERVATION AWARD - 2016 <u>AVIATION SECTOR</u> "AWARD OUESTIONNAIDE" ### "AWARD QUESTIONNAIRE" | 1 | Name of the Aviation Company | | |---|--|--| | 2 | Year of commencement | | | 3 | Complete Address of Aviation Company (including Chief Executive's name & designation) with telephone no., fax no. & E-mail Address | | | | Name, Designation, Address, Telephone, mobile, fax nos. & E-mail of responsible person who could be contacted in connection with the application for award | | ### **FUEL SAVINGS PROFORMA** ### **OPERATIONS & FLIGHT DESPATCH** | | | | OFLI | AHONS & I | OF LIVATIONS & I LIGHT DESPATOR | | | | | | | | | | |---|----------|-----------|-----------------|---------------|---------------------------------|-----------|-----------|-----------------|--|--|--|--|--|--| | 1 | Aircraft | Number of | Available Seats | Total Flt Hrs | Flt Burn | A/C Speed | A/C Speed | Annual Burn | | | | | | | | | Types | Aircraft | per Aircraft | per Fleet/Yr | Kg/Hr | kt/hr | km/hr | per Fleet Kg/Yr | TOTALS | | | | | | | | | | | | | | | APU Single Pack for optimized time | Savings
1 Pack Kg | Tgt APU
Hrs | Total
Savings | % Improvement
achieved | |------------------------------------|----------------------|----------------|------------------|---------------------------| Total | | | | | | APU No Pack Optimized utilization | Savings
No Pack Kg | Opt APU
Hrs | Total
Savings | |-----------------------------------|-----------------------|----------------|------------------| Total | | | | | 4 | Engine Out
Taxi out | Number
Cycles | Taxi Out
Avg Min | Min Start
Time min. | Fuel Flow Saving
Kg/Hr Eng Out | Kg/Yr | Pot Eng Out
Taxi Out Sav. | Total Taxi Out
Savings | % Improvement achieved | |---|------------------------|------------------|---------------------|------------------------|-----------------------------------|-------|------------------------------|---------------------------|------------------------| Total | | | | | | | | | 1 | | Reduced Flap
Take off | Number
Cycles | Saving
per takeoff | Kg/Yr | Total
Savings | % Improvement achieved | |-------------|--------------------------|------------------|-----------------------|-------|------------------|------------------------| Total Total | | | | | | | | 6 | Reduced Acceleration Altitude | Number
Cycles | Saving
per takeoff | Kg/Yr | Total
Savings | % Improvement achieved | |---|-------------------------------|------------------|-----------------------|-------|------------------|------------------------| Total | | | | | | | 7 | Pilot Technique
Flight Management | Burn
Kg/Yr | Total
Savings | Savings per
flight in kg | % Improvement achieved | |---|--------------------------------------|---------------|------------------|-----------------------------|------------------------| Total | | | | | | 8 | Low Noise Low Drag | Number | Saving | Kg/Yr | Total | % Improvement | | | |----|--------------------------------------|------------------|--------------------|--------------|-----------------------------------|---------------|------------------|------------------------| | | Approaches | Cycles | per app. | _ | Savings | achieved | Total | 9 | Reduced Flap | Number | Savings | Kg/Yr | Total | % Improvement | | | | | Landings | Cycles | per app. | | Savings | achieved | Total | | | | | | | | | 10 | Idle Reverse | Number | Fuel Flow | Rev time | Fuel Used | Kg/Yr | Total | % Improvement | | | on Landing | Cycles | Full Reverse | Sec | kg | rvg/ rr | Savings | % Improvement achieved | Total | | | | | | | | | | Total | | | | | | | | | 11 | | Number | Taxi In | Cool | Fuel Flow Saving | Kq/Yr | Total | % Improvement | | 11 | Total Engine out Taxi in | Number
Cycles | Taxi In
Avg Min | Cool
Down | Fuel Flow Saving
Kg/Hr Eng Out | Kg/Yr | Total
Savings | % Improvement achieved | | 11 | Engine out | | Taxi In
Avg Min | | Fuel Flow Saving
Kg/Hr Eng Out | Kg/Yr | Total
Savings | % Improvement achieved | | 11 | Engine out | | Taxi In
Avg Min | | Fuel Flow Saving
Kg/Hr Eng Out | Kg/Yr | | % Improvement achieved | | 11 | Engine out | | Taxi In
Avg Min | | Fuel Flow Saving
Kg/Hr Eng Out | Kg/Yr | | % Improvement achieved | | 11 | Engine out | | Taxi In
Avg Min | | Fuel Flow Saving
Kg/Hr Eng Out | Kg/Yr | | % Improvement achieved | | 11 | Engine out | | Taxi In
Avg Min | | Fuel Flow Saving
Kg/Hr Eng Out | Kg/Yr | | % Improvement achieved | | 11 | Engine out | | Taxi In
Avg Min | | Fuel Flow Saving
Kg/Hr Eng Out | Kg/Yr | | % Improvement achieved | | 11 | Engine out | | Taxi In
Avg Min | | Fuel Flow Saving
Kg/Hr Eng Out | Kg/Yr | | % Improvement achieved | | 11 | Engine out | | Taxi In
Avg Min | | Fuel Flow Saving
Kg/Hr Eng Out | Kg/Yr | | % Improvement achieved | | 11 | Engine out | | Taxi In
Avg Min | | Fuel Flow Saving
Kg/Hr Eng Out | Kg/Yr | | % Improvement achieved | | 11 | Engine out
Taxi in | | Taxi In
Avg Min | | Fuel Flow Saving
Kg/Hr Eng Out | Kg/Yr | | % Improvement achieved | | 11 | Engine out | | Taxi In
Avg Min | | Fuel Flow Saving
Kg/Hr Eng Out | Kg/Yr | | % Improvement achieved | | 11 | Engine out
Taxi in | | Taxi In
Avg Min | | Fuel Flow Saving
Kg/Hr Eng Out | Kg/Yr | | % Improvement achieved | | 11 | Engine out Taxi in | | Taxi In Avg Min | Down | Fuel Flow Saving
Kg/Hr Eng Out | Kg/Yr Total | | % Improvement achieved | | | Engine out Taxi in | Cycles | Avg Min | Down | Kg/Hr Eng Out | | Savings | % Improvement achieved | | | Engine out Taxi in Total Optimized | Cycles | Avg Min | Down | Kg/Hr Eng Out | Total | % Improvement | % Improvement achieved | | | Engine out Taxi in Total Optimized | Cycles | Avg Min | Down | Kg/Hr Eng Out | Total | % Improvement | % Improvement achieved | | | Engine out Taxi in Total Optimized | Cycles | Avg Min | Down | Kg/Hr Eng Out | Total | % Improvement | % Improvement achieved | | | Engine out Taxi in Total Optimized | Cycles | Avg Min | Down | Kg/Hr Eng Out | Total | % Improvement | % Improvement achieved | | | Engine out Taxi in Total Optimized | Cycles | Avg Min | Down | Kg/Hr Eng Out | Total | % Improvement | % Improvement achieved | | | Engine out Taxi in Total Optimized | Cycles | Avg Min | Down | Kg/Hr Eng Out | Total | % Improvement | % Improvement achieved | | | Engine out Taxi in Total Optimized | Cycles | Avg Min | Down | Kg/Hr Eng Out | Total | % Improvement | % Improvement achieved | | | Engine out Taxi in Total Optimized | Cycles | Avg Min | Down | Kg/Hr Eng Out | Total | % Improvement | % Improvement achieved | Total | 13 | Fit Plan Optimization
LATERAL | Number | Avg Burn | Extra cost | Target | Total
Savings | % Improvement achieved | |------------|-----------------------------------|------------------|--|-----------------------|-----------------------|------------------------|------------------------| | | LATERAL | Cycles | Extra | | Improvement | Savings | acnieved | Total | | | | | | | | | 1000 | | | | | | | | 14 | FIt Plan Optimization
VERTICAL | Number
cycles | Avg Burn
Extra | Extra cost | Target
Improvement | Total
Savings | % Improvement achieved | Total | | | | | | | | 45 | Contingonal Fuel | C of M | Dovoontogo vaduation | A. (a. 10/6 | Toward | Total | 0/ Improvement | | 15 | Contingency Fuel | C of W
1 kg | Percentage reduction
Contingency Fuel | Avg Wt
Extra | Target
Improvement | Total
Savings | % Improvement achieved | Total | | | | | | | | 16 | Pilot | C of W | Avg Wt | Target | Total | % Improvement | | | | Additional Fuel | 1 kg | Extra | Improvement | Savings | achieved | Total | | | | | | | | 4 - | O | 0.404 | A 1814 | T 1 | T | 0/ 1 | I | | 17 | Over Fuelling
Above Requested | C of W
1 kg | Avg Wt
Extra | Target
Improvement | Total
Savings | % Improvement achieved | Total | | | | | | | | | | | | | | | | | 18 | Alternate
Selection (closest) | C of W
1 kg | Avg Wt
Extra | Target
Improvement | Total
Savings | % Improvement achieved | |----|----------------------------------|----------------|-----------------|-----------------------|------------------|------------------------| Total | | | | | | | 19 | C of G
Management | Burn
Kg/Yr | Target
Improvement | Total
Savings | % Improvement achieved | |----|----------------------|---------------|-----------------------|------------------|------------------------| Total | | | | | | 20 | Zero Fuel Weight | C of W | Avg Cycle | Avg Diff | Fuel added | Target | Total | % Improvement | |----|------------------|--------|-----------|-------------|-------------------|-------------|---------|---------------| | | Error | 1 kg | Hrs | PZFW & AZFW | for over-estimate | Improvement | Savings | achieved | Total | | | | | | | | ### MAINTENANCE & ENGINEERING | Engine Core
Water Wash | Burn
Kg/Yr | Improved
perf | Total
Savings | % Improvement achieved | |---------------------------|---------------|------------------|------------------|------------------------| Total | | | | | | 2 | (Engine) DRAG
Fuel Bias | Burn
Kg/Yr | Improved perf | Total
Savings | % Improvement achieved | |---|-----------------------------|---------------|---------------|------------------|------------------------| Total | | | | | | 3 | (Airframe) DRAG
Fuel Bias | Burn
Kg/Yr | Reduced
Drag | Total
Savings | % Improvement achieved | |---|------------------------------|---------------|-----------------|------------------|------------------------| Total | | | | | | Aerodynamic
Deterioration | Burn
Kg/Yr | Reduced
Drag | Total
Savings | % Improvement achieved | |------------------------------|---------------|-----------------|------------------|------------------------| Total | | | | | | 5 | Aircraft Wash
Program | Burn
Kg/Yr | Reduced
Drag | Total
Savings | % Improvement achieved | |---|--------------------------|---------------|-----------------|------------------|------------------------| Total | | | | | | 6 | Aircraft
Weight Issues M&E | C of W
1 kg | Avg Wt
Extra | Cost to carry
Weight | Total
Savings | % Improvement achieved | |---|-------------------------------|----------------|-----------------|-------------------------|------------------|------------------------| Total | | | | | | | 7 | Engine SFC
Build Standard | Burn
Kg/Yr | Reduced
Drag | Total
Savings | % Improvement achieved | |---|------------------------------|---------------|-----------------|------------------|------------------------| Total | | | | | | 8 | APU SFC
Build Standard | Burn
Kg/Yr | Improved
perf | Total
Savings | % Improvement achieved | |---|---------------------------|---------------|------------------|------------------|------------------------| Total | | | | | | 9 | APU Potential
Maint. Savings | Potential APU
Fuel Savings | Total APU
Maint. Savings | % Improvement achieved | |---|---------------------------------|-------------------------------|-----------------------------|------------------------| Total | | | | ### **CABIN - INFLIGHT SERVICES** | 1 | Galley & Cabin Equipment Weight Reduction | C of W
1 kg | Avg Wt
Extra | Total
Savings | % Improvement achieved | |---|---|----------------|-----------------|------------------|------------------------| Total | | | | | | 2 | Catering
Weight Reduction | C of W
1 kg | Avg Wt
Extra | Cost to carry
Catering | Weight
Reduction in kg | Total
Savings | % Improvement achieved | |---|------------------------------|----------------|-----------------|---------------------------|---------------------------|------------------|------------------------| Total | | | | | | | | 3 | Duty Free
Weight Reduction | C of W
1 kg | Avg Wt
Extra | Cost to carry
Duty Free | Weight
Reduction in kg | Total
Savings | % Improvement achieved | |---|-------------------------------|----------------|-----------------|----------------------------|---------------------------|------------------|------------------------| Total | | | | | | | | 4 | Magazines
Weight Reduction | C of W
1 kg | Avg Wt
Extra | Cost to carry
Magazines | Weight
Reduction in kg | Total
Savings | % Improvement achieved | |---|-------------------------------|----------------|-----------------|----------------------------|---------------------------|------------------|------------------------| Total | | | | | | | | | Total | | | | | | | | 5 | Potable | C of W | Water Uplift | Cost to carry | Weight | Total | | | | Water | 1 kg | in kg | Max Water Uplift | Reduction in kg | Savings | % Improvement Achieved | Total | | | | | | | ## **SUMMARY OF FUEL SAVINGS** TOTAL NO. OF KGS OF FUEL SAVED TOTAL % OF FUEL SAVED Total fuel consumption in kgs. Operations and Dispatch YEAR 2014-15 YEAR 2015-16 APU Fuel Savings APU Single Pack after Opt Time APU No Pack after Opt Time Engine out Taxi out Reduced Flap Take Off Reduced Accelaration Altitude Pilot Technique & Flight Management Low Noise Low Drag Approaches Reduced Flap Landings Idle Reverse on Landing Engine out Taxi in Optimized Cost Index & Route Specific Flight Planning system Contingency Fuel Pilot Additional Fuel Over Fuelling Above Requested Alternate Selection C of G Zero Fuel Weight Error Flight Ops Total Maintenance & Engineering Aircraft Weight Reductions Engine Core Water Wash Airframe/Engine Drag/Aerodynamics/Wash/Paint Engine and APU Build Standard APU Maintenance Savings Empty Weight Potable Water M&E Total Commercial Empty Weight Cabin Equipment Empty Weight Magazines **Empty Weight Catering Services** Empty Weight Duty Free Material Com Total