

GOVERNMENT OF INDIA MINISTRY OF POWER

1

DRAFT ECO NIWAS SAMHITA (ENS)

(Residential Buildings)

For Comments of Stakeholders

🌐 www.beeindia.gov.in

ऊर्जा दक्षता ब्यूरो (भारत सरकार, विद्युत मंत्रालय) BUREAU OF ENERGY EFFICIENCY (Government of India, Ministry of Power)

F.No. BLDS-13/1/23-BEE 6578

23rd January, 2024

Subject: Invitation for Feedback on Draft Energy Conservation and Sustainable Building Code (Commercial and Office Buildings)

Dear Madam/Sir,

In view of the amendment to Energy Conservation Act in December 2022, Energy Conservation and Building Code (ECBC) is under revision to Energy Conservation and Sustainable Building Code-Commercial and office Building for the inclusion of sustainability features.

Enclosed herewith is the draft of the Energy Conservation and Sustainable Building Code (Commercial and Office Buildings). We value your expertise and invite you to meticulously review and examine the document.

Doc. No.	Title
ECSBC.Version	Draft Energy Conservation and Sustainable Building Code (Draft
1:2024	ECSBC) – Commercial and Office Buildings

Your valuable insights are crucial to ensuring the effectiveness of this code. We kindly request you to provide your comments and suggestions on the document. Your expertise will contribute significantly to the enhancement of industry standards.

Submission Details:

Please email your comments, using the prescribed format enclosed with this message, to ecsbcfeedback@gmail.com & sdiddi@beeindia.gov.in by 12th Feb 2024.

Presumed Approval:

If no comments are received by the stipulated deadline, it will be presumed that the document requires no further corrections.

Review Process:

In the event of comments and suggestions, the competent authority will thoroughly review and consider each input before finalizing the document. Your contributions will play a pivotal role in shaping the code's success.

We have attached the specified format for your convenience. Kindly adhere to this format, as any deviation will not be entertained during the review process. Thank you for your commitment to sustainability, and we look forward to your constructive feedback.

Yours faithfully,

(Saurabh Diddi) Director

Encl: 1. Draft ECSBC-Commercial and Ofiice Building 2. Feedback Format

स्वहित एवं राष्ट्रहित में ऊर्जा बचाएँ Save Energy for Benefit of self and Nation

चौथा तल, सेवा भवन, आर॰ के॰ पुरम, नई दिल्ली-110066, वेबसाईट / Website : www.beeindia.gov.in 4th Floor, Sewa Bhawan, R.K. Puram, New Delhi-110 066, दूरमाष / Tel. : 91 (11) 26766700, फैक्स / Fax : 91 (11) 20867402

11

FORMAT FOR FEEDBACK ON ECSBC- RESIDENTIAL BUILDINGS (ENS)

12 (Please use A4 size sheet of paper only and type within fields indicated. Comments on

13 each clause/subclause/table/fig etc. be started on a fresh box. Information in column 7

- should include reasons for the comments, and those in column 6 should include suggestions
- 15 for modified wording of the clauses when the existing text is found not acceptable.
- 16 Adherence to this format. {Please e-mail your comments to: <u>ensfeedbackbee@gmail.com</u>
- 17 & <u>sdiddi@beeindia.gov.in by 12th Feb 2024.</u>

ECSBC Working Draft Chapter Nar	ne:
Name of Submitter	:
Organization	:
Email ID & Contact Number	:
Date of Comment	:
Last date of receipt of comment	: 12 th Feb 2024

18 19

17						
Sr.	Clause/S	Line	Comment	Comments	Modified Wordings	Reasons/
No.	Ub-	No.	type	/Suggestions	of the Clause	Justifications for the
	clause/P ara No.		Technical /			Proposed
			Editorial			Changes
(1)	(2)	(3)	(4)	(5)	(6)	(7)
(1)	(2)	(3)	(4)	(5)	(0)	(7)
			\circ			
		8				
	\square					
	$\overline{()}$					
20	-	I				

	22	
	23	SHITLE THE
	0.4	TO DE LING, COMPANY
	24 25	Bureau of Energy Efficiency (Ministry of Power, Government of India)
	26	www.beeindia.gov.in
	27	
	28	
	29	Eco-Niwas Samhita (ENS) 2024
	30	(Energy Conservation and Sustainable Building
	31	Code – Residential Building)
	32	
	33	
	34	© 2024 Bureau of Energy Efficiency
	35	
	36 37	Published by
	38	Bureau of Energy Efficiency
	39	4 th Floor, Sewa Bhawan, R K Puram, New Delhi, India`
	40 41	
	41 42	
	42 43	No portion (graphics or text) of this Code may be reproduced, translated, or transmitted in
	44	any form or manner by any means – including but not limited to electronic copy, photocopy,
	45	or any other information storage and retrieval system without explicit written consent from
	46	Bureau of
	47	Energy Efficiency, New Delhi.
	48	
	49	
	50	All rights reserved Printed in New Delhi, India
	51 52	
	52 53	1st Printed: xxxx 2024
	54	
	55	Printed on 100% recycled paper.
	56	
6		
	57	
$\mathbf{\setminus}$		
	58	

59	TABLE OF CONTENTS	
60	List of Tables	8
61	Table of Figures	10
62	Message from Director General, BEE	11
63	Acknowledgement	12
64	List of Steering Committee Members	13
65	List of Technical Committee Members	14
66	Development Teams Error! Bookmark no	ot defined.
67	Chapter 1: Introduction	15
68	Chapter 2: Scope	18
69	Chapter 3: Code Compliance	20
70	Chapter 4: Sustainable Site Management	22
71	4.1 SCOPE	22
72	4.2 MANDATORY PROVISIONS	22
73	4.2.1 Site Preservation	22
74	4.2.2 Universal Accessibility	22
75	4.2.3 Landscaping	22
76	4.2.4 Mitigating Urban Heat Island	23
77	4.3 INCREMENTAL PROVISIONS (MAXIMUM 30 POINTS)	23
78	4.3.1 LANDSCAPING (MAXIMUM 16 POINTS)	23
79	4.3.2 Mitigation of Urban Heat Island (MAXIMUM 14 POINTS)	23
80	Chapter 5: Energy Management and Conservation	25
81	5.1 SCOPE	25
82	5.2 MANDATORY PROVISIONS	25
83	5.2.1 Building Envelope	25
84	5.2.2 Building Services	27
85	5.2.3 Indoor Electrical End use (If applicable)	31
86	5.2.4 Renewable EnERgy Systems	32
87	5.3 INCREMENTAL PROVISIONS (Maximum 120 Points)	32
88	5.3.1 Building Envelope (Maximum 40 Points)	32
89	5.3.2 Building Services (Maximum 28 Points)	33
90	5.3.3 Indoor Electrical End-use (If applicable) (Maximum 42 Points)	34
91	5.3.4 Renewable Energy Systems (Maximum 10 points)	35
92	Chapter 6: Water Conservation and Management	37
93	6.1 SCOPE	37

	94	6.2	MA	NDATORY PROVISIONS	37
	95	6.2	.1	Site Water Use Reduction	37
	96	6.2	.2	Building Water Use Reduction	37
	97	6.2	.3	Water Usage Monitoring	38
	98	6.2	.4	RAINWATER HARVESTING	38
	99	6.2	.5	Recycle & Reuse of Wastewater	39
	100	6.2	.6	WATER QUALITY REQUIREMENTS	39
	101	6.3	INC	REMENTAL PROVISIONS (Maximum 43 points)	39
	102	6.3	.1	Site Water Use Reduction (MAXIMUM 17 POINTS)	39
	103	6.3	.2	Building Water Use Reduction (MAXIMUM 26 POINTS)	40
	104	Chapte	er 7: '	Waste Management	41
	105	7.1	SCO	DPE	41
	106	7.2	MA	NDATORY PROVISIONS	42
	107	7.2	.1	Construction waste management	42
	108	7.2	.2	Post-construction waste management	42
	109	7.3	INC	REMENTAL PROVISIONS (maximum 7 points)	43
	110	7.3	.1	Construction waste management (maximum 2 points)	43
	111	7.3	.2	Post-construction waste management (maximum 5 points)	44
	112	Chapte	er 8: I	ndoor EnvironmentAL Quality (IEQ)	45
	113	8.1	SCO	DPE	45
	114	8.2	MA	NDATORY PROVISIONS	45
	115	8.2	.1	Ventilation potential	45
	116	8.2	.2	Low-Emitting Materials	45
	117	8.2	.3	Air Quality in Car parking	45
	118	8.2	.4	Ventilation Opening in Kitchen and bathrooms/toilets	45
	119	8.2	.5	Daylight availability	46
	120	8.2	.6	Lighting adequacy for common areas and exterior lighting	46
	121	8.2	.7	Lighting quality - Colour rendering Index	46
	122	8.2	.8	Thermal comfort	47
	123	8.3	INC	REMENTAL POINTS PROVISIONS (Maximum 10 Points)	47
	124	8.3	.1	Cross-ventilation (maximum 4 Points)	47
\searrow	125	8.3	.2	Daylight availability (Useful daylight illuminance) (Maximum 4 Points)	47
•	126	8.3	.3	Air quality in UNDERGROUND PARKING AREA (MAXIMUM POINTS 2)	48
	127	Chapte	er 9: (Calculations and Formula	49
	128	9.1		Calculation of Openable Window-to Floor area ratio (WFR $_{op}$)	49

129	9.2	Calculation Of Window-To-Wall Ratio (WWR)	50
130	9.3	Calculation Of Thermal Transmittance (U Value) Of Roof and Wall	50
131	9.4	Thermal Transmittance of Roof (Uroof)	54
132 133 134		Residential Envelope Transmittance Value (RETV) for building enve troof) for four climate zones, namely, composite climate, Hot-Dry clim lumid climate, and Temperate climate	
135 136	9.6	Calculation of the Weighted Average Retv Of the total residential pro 56	oject
137 138	9.7 climate	Thermal Transmittance of building envelope (except roof) for $(U_{\text{envelope,cold}})$	cold 56
139	9.8	Calculation of Orientation Factor	57
140	9.9	Calculation Of Equivalent SHGC	58
141	9.10	Lux level calculation	63
142	9.11	Day light Availability Calculation	63
143	9.12	Example for Post Occupancy Waste generation	64
144	9.13	calculation of area requirement for Storing organic waste	64
145	9.14	calculation for area required in vermicomposting	65
146	9.15	Example for construction Waste diversion estimation:	66
147	Chapter 10:	: Terminology & Definitions	67
148	Annexures		74
149	Annexure	1: Compliance Documents	74
150	Annexure	2: Embodied Energy	77
151	Annexure	3: Best Construction Practice	80
152	Annexure	4: Retrofitting of Residential Buildings	81
153	Annexure	5: Improved Air Cooling	84
154	Annexure	6: Smart Home	90
155	Annexure	7: Guidelines for Design for Natural Ventilation	94
156	Annexure	8: Cool Roof and Roof Gardens	98
157			
158			
159			
081			

160	LIST OF TABLES	
161	Table 1: Points required to achieve ENS+ and Super ENS compliance	20
162	Table 2: Maximum incremental points in each chapter	20
163	Table 3: Points for increasing vegetated area on site	23
164	Table 4: Points for Reducing the Turf Area	23
165	Table 5: Points for Increasing the Landscaped Area planted with Native Plant Species	23
166	Table 6: Points for Reducing Paved Area on Site	23
167	Table 7: Points for Increasing Pervious Paving	24
168	Table 8: Minimum requirement of window-to-floor area ratio (WFRop)	
169	Table 9: Minimum visible light transmittance (VLT) requirement	
170	Table 10: Common Area Lighting	
171	Table 11: Outdoor Lighting Requirement	
172	Table 12: Permissible Limit for Dry-Type Transformers	
173	Table 13: Permissible Limit for Oil-Type Transformers	31
174	Table 14: Points for Thermal Transmittance of Roof (Uroof)	33
175	Table 15: Points for improved RETV	
176	Table 16: Points for Thermal transmittance of the building envelope (except the roof) for	
177	climate (UENVELOPE, COLD)	
178	Table 17: Points for Common Area Lighting	33
179	Table 18: Points for automatic control of exterior lights	
180	Table 19: Points for Elevators	
181	Table 20: Points for Pumps	
182	Table 21: Points for Electrical System	
183	Table 22: Points for Lamp Lumen Efficacy of Indoor Lighting	
184	Table 23: Points for BEE star rated ceiling fans	
185	Table 24: Points for BEE Star Rating of Air-Conditioners	
186	Table 25: Points for renewable energy systems	
187	Table 26: Sanitary Fittings	
188	Table 27: Sanitary Wares	
189	Table 28: Points for recycled water used for irrigation	
190	Table 29: Points for Drip irrigation System	
191	Table 30: Points for Sprinkler Irrigation System	
192	Table 31: Points for Reclamation of Wastewater	
193	Table 32: Points for Star Rated Sanitary Fittings	
194	Table 33: Points for Star Rated Sanitary Ware	
195	Table 34: Area requirement for different strategies	
196	Table 35: Points for reuse of waste generated on-site	
197	Table 36: Points for waste segregation at the centralized unit	
198	Table 37: Points for Composting of Organic Waste	
199	Table 38: VOC Limits of Selected Paints	
200	Table 39: Required Min. Lux Levels as per space	
201	Table 40: Required CRI as per space type	
201	Table 41: Cross ventilation requirement for incremental points	
202	Table 42: Daylight Requirement	
203	Table 43: Air Quality in Car Parking	
204	Table 44: Default openable area to opening area ratio	
205	Table 44. Default openable area to opening area rano	
208 207	Table 46: Type of material and Thermal Conductivity	
207	Table 48. Type of material and mermal conductivity Table 47: Values of unventilated air layer thermal resistance for U-value calculation	

00	оо т	include (0) Constitution to (or low on all a) for DETV (for modular	Γ/
20		able 48: Coefficients (a, b, and c) for RETV formula	
21		Table 49: Orientation factor (ω) for different orientations	
21		Table 50: External Shading Factor for Overhang (ESF _{overhang}) for LAT \ge 23.5°N	
21		able 51: External Shading Factor for Overhang (ESF _{overhang}) for LAT<23.5°N	
21		Table 52: External Shading Factor for Side Fin-Right (ESF _{right}) for LAT $\ge 23.5^{\circ}$ N	
21		able 53: External Shading Factor for Side Fin-Right (ESF _{right}) for LAT<23.5°N	
21		able 54: External Shading Factor for Side Fin-Left (ESF _{left}) for LAT \ge 23.5°N	
21		able 55: External Shading Factor for Side Fin-Left (ESF _{left}) for LAT<23.5°N	
21		able 56: Daylight Extent Factors (DEF) for Manually Calculating Daylight Area	
21		able 57: Calculation example for construction waste management	
21		able 58: Materials and Embodied energy consumption	
22		able 59: Functionality Requirement for smart Home	A 1
22		able 60: Minimum requirement of window-to-floor area ratio, WFR_{op}	94
22	22		
22	23		
		c \\	
		\mathbf{Q}	

224	
225	TABLE OF FIGURES
223 226 227 228 229 230 231 232 233 234 235 236	Figure 1: Primary orientations for determining the orientation factor ω
237 238	Figure 11: Room with multiple openings on the external wall
239 240	
242 243 244 245	CR START
081	K C C C C C C C C C C C C C C C C C C C

246	MESSAGE FROM DIRECTOR GENERAL, BEE
247	
248	
249	
250 251	
252	
253	
254	
255	
256	
257 258	
258 259	
260	
261	
262	
263	
264	$()^{\vee}$
265 266	
267	
268	
269	
270	
271	
272 273	
273	
276	
277	
	FLCBCR H
$\sim \nabla$	
X'	
$\langle \rangle$	

By Shri Saurabh Diddi (Director, BEE) 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305	
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304	
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304	
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305	4
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304	
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305	
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305	
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305	
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305	
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305	
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305	
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305	
292 293 294 295 296 297 298 299 300 301 302 303 304 305	
293 294 295 296 297 298 299 300 301 302 303 304 305	
294 295 296 297 298 299 300 301 302 303 304 305	
295 296 297 298 299 300 301 302 303 304 305	
296 297 298 299 300 301 302 303 304 305	
297 298 299 300 301 302 303 304 305	
298 299 300 301 302 303 304 305	
299 300 301 302 303 304 305	
300 301 302 303 304 305	
301 302 303 304 305	
302 303 304 305	
303 304 305	
304 305	
305	
307	
308	
309	
310	
311	
312	
313	
314	
315	
316	
317	
318	
319	
320	
321	
322	
323 324	
324 325	

326 LIST OF STEERING COMMITTEE MEMBERS	
327 328	
329 330	
331 332	
333	
R	
\mathcal{A}	
Rh	
or the secret of	
13	

336					
337	DEVELOPMEN	ΤΤΕΑΜ			
338	1.				
339					
340					
					0
					2
				\sim	
				\mathcal{O}	
			K		
			AV.		
		0	5		
		6)			
- C					
不,	ECSB C				

341 CHAPTER 1: INTRODUCTION

342 1.1 In 2022, India revised its Nationally Determined Contribution under the Paris Agreement. 343 Among others, the revision had two significant components, the first was to put forward 344 and further propagate a healthy and sustainable way of living based on traditions and 345 values of conservation and moderation, including through a mass movement for 'LIFE'-346 'Lifestyle for Environment' as a key to combating climate change and the second was to 347 reduce Emissions Intensity of its GDP by 45 percent by 2030, from the 2005 level. Any effort 348 to achieve these targets is contingent upon the increase in the adoption of low carbon, 349 sustainable pathways across all sectors, but especially in the building sector.

- 350 1.2 As per Energy Statistics 2024.1 released by the Ministry of Statistics and Programme 351 Implementation (MoSPI), total energy demand by various sectors for FY 2021–22 is about 352 525.7 Mtoe, out of which the residential (domestic) sector consumes about 58.8 Mtoe, 353 which is 11.2% of total primary energy consumption. The energy demand in the domestic 354 sector has been on the rise since the late 2000s, with increasing demand for appliance 355 ownership, especially of fans and televisions in urban and rural areas, and an increase in 356 refrigerators and air conditioners in urban areas. Further, it is estimated that domestic 357 sector will consume about 98.6 million ton² of energy.
- 1.3 The building sector in India is responsible for over 30% of the total electricity consumed in
 the country, out of which about 70% is consumed in residential buildings. The total
 electricity demand for FY 2021–22 is about 1296 billion Units (BU)³, out of which the
 residential sector consumed about 334 BU which is 25.8% of total electricity consumption.
 Electricity consumption increased from 183.7 BU in 2012- 13 to 334 BU in 2021-22 with a
 CAGR of 6.87%. Further, it is estimated that, the electricity consumption of the residential
 sector will increase to 769 BU4 by 2031.
- 1.4 According to India Cooling Action Plan 2019, approximately 8% of the current households
 have room air conditioners. This is anticipated to rise to 21% and 40% in 2027-28 and 2037 38 respectively. The demand for air conditioning will continue its exponential growth with
 improvement in household incomes and will become the dominant contributor of GHG
 emissions nation-wide owing to increased electricity consumption. This situation calls for an
 immediate energy conservation action plan.
- 371 1.5 As of 2019, the Central Water Commission has assessed the average annual per capita 372 water availability to be 1486 cubic meters and 1367 cubic meters for 2021 and 20315, 373 respectively. According to standards, an annual per-capita water availability of less than 374 1700 cubic meters is considered as a water stressed condition (PIB, 2022). The per capita 375 water availability in the country in reducing due to an increase in population, climate 376 change, rapid urbanisation and uneven distribution of water. Both demand-side and 377 supply side measures to ensure efficient water management, conservation, and 378 augmentation are needed to avoid a water crisis.

¹ Energy Statistics India – 2024, Ministry of Statistics and Programme Implementation, National Statistical Office, Government of India

² UNIocking NATional Energy-Efficiency potential (UNNATEE), Bureau of Energy Efficiency, Ministry of Power

³ Energy Statistics India – 2024, Ministry of Statistics and Programme Implementation, National Statistical Office, Government of India

⁴ UNIocking NATional Energy-Efficiency potential (UNNATEE), Bureau of Energy Efficiency, Ministry of Power

⁵ Reassessment of Water Availability in India using Space Inputs, 2019, Central Water Commission, Delhi

- 1.6 Excessive waste generation and improper waste management is a major environmental concern in India. The per capita waste generation in India varies between 0.2 Kg to 0.6 Kg per day in Tier 1 cities and is expected to increase at a rate of 5% annually. It is dependent on various factors ranging from the size of the city, season and income groups. As of 2021, a total of 1.6 Lakhs tonnes of waste is generated in India on a daily basis6. While 50% of this waste is treated, nearly 20% of the waste still reaches the landfill and over 30% of the waste remains unaccounted for.
- 1.7 Indoor environmental quality (IEQ) refers to the conditions inside a building that can affect
 the health, comfort, and productivity of its occupants. Several factors contribute to IEQ,
 including ventilation, air quality, thermal comfort, lighting, and acoustics. As we spend 90%
 of our time indoors, poor IEQ results in discomfort and potential health issues for occupants.
 Prioritizing and maintaining optimal IEQ within confined buildings is crucial, as it can save
 people from diseases like chronic obstructive pulmonary disease (COPD), which is the 3rd
 highest reason for global deaths according to the World Health Organisation (WHO).
- 393 1.8 In the illustrated context, Energy Conservation & Sustainable Building Codes for Residential 394 Buildings (ENS) 2024, is an important regulatory measure for ushering in sustainability and 395 energy efficiency in the Indian building sector. The present code integrates the Eco Niwas 396 Samhita 2018 (Part I: Building Envelope), Eco Niwas Samhita 2021 (Part-II: Electro-397 Mechanical & Renewable Energy Systems) along with measures for sustainable site 398 planning, water conservation, waste management and, indoor environmental quality to 399 ensure that residential buildings in India have a low carbon footprint and provide a healthy 400 environment for the occupants.
- 401 1.9 The code also provides the following eight annexures which are recommendatory and402 envisaged to be added in future revision of the code.
- 403 Annexure 1: Compliance Documents
- 404 Annexure 2: Embodied energy
 - Annexure 3: Good construction practices
- 406 Annexure 4: Retrofitting of residential buildings
- 407 Annexure 5: Improved air cooling
- 408 Annexure 6: Smart Home
- 409 Annexure 7: Guidelines to Design for Natural Ventilation
- 410 Annexure 8: Cool Roof and Roof Gardens

⁶ Annual Report on Solid Waste Management (2020-21), CPCB, Delhi

412 CHAPTER 2: SCOPE

2	413	2.1	The amendment of the Energy Conservation (EC) Act in 2022, widens the scope of
2	414		BEE's Energy Conservation Codes to include other sustainability features. The Eco-
2	115		Niwas Samhita 2024 is a consolidated energy conservation and sustainable building
2	416		code that integrates the ENS Part I (Building Envelope) and, Part II (Electro-Mechanical
2	117		and Renewable Energy Systems) and includes new provisions to improve the overall
4	118		sustainability of residential buildings.
2	119	2.2	The code applies to residential buildings or residential building complexes which has a
2	120		minimum connected load of 100 kilowatt (kW) or contract demand of 120 kilovolt
2	121		ampere (kVA) ⁷ .
	122	2.2.1	Where a 'residential building', as defined in National Building Code 2016, includes any
	123		building in which sleeping accommodation is provided for normal residential purposes
	124		with or without cooking or dining or both facilities. this definition includes:
	125	2.2.1.1	One- or two-family private dwellings: these shall include any private dwelling,
	126	2.2.1.1	which is occupied by members of one or two families and has a total sleeping
	127	0010	accommodation for not more than 20 persons.
	128	2.2.1.2	Apartment houses: these shall include any building or structure in which living
	129		quarters are provided for three or more families, living independently of each other
	130		and with independent cooking facilities. this also includes 'Group housing'.
	131	2.2.1.3	Mixed-use building: In case of a mixed-use building having both residential and
2	132		commercial usage, the code shall apply to the residential part provided the
2	133		residential area is more than 10% of the total Above Grade Floor Area.
2	134	2.2.2	The code shall apply to any building project which has more than 50% of the total built
	135	2.2.2	up area designated as 'residential building'.
	136	2.3	In accordance with section 14(p) of the Energy Conservation (Amendment) Act 2022
	137		the purpose of the Energy Conservation and Sustainable Building Code (Code) is to
	138		provide norms and standards for energy efficiency and its conservation, use of
2	139		renewable energy and other green building requirements for a building.
2	140	2.4	The following are excluded from the definition of 'residential building' for of this code.
2	141	2.4.1	Lodging and rooming houses: these shall include any building or group of buildings
2	142		under the same management in which separate sleeping accommodation on
2	143		transient or permanent basis, with or without dining facilities but without cooking
	144		facilities for individuals, is provided. this includes inns, clubs, motels, and guest houses.
	145	2.4.2	Dormitories: these shall include any building in which group sleeping accommodation
	146	2.1.2	is provided, with or without dining facilities for persons who are not members of the
	147		same family, in one room or a series of closely associated rooms under joint occupancy
		\mathbf{X}	
	148		and single management. For example, school and college dormitories, students, and
	149		other hostels and military barracks.
	450	2.4.3	Hotels and resorts: these shall include any building or group of buildings under single
	451		management, in which sleeping accommodation is provided, with or without dining
2	152		facilities.
	153	2.5	The code is also applicable for all additions and/or alterations made to existing
	154		residential buildings where the existing building exceeds the threshold defined in clause
	155		2.2 of this document. For this purpose, the addition and/or alterations together with the
-	100		z,z or mis accoment, r or mis porpose, me adamentana/or aneranons togerner with me

 $^{^{7}}$ or plot area of 3000 m², whichever is more stringent.

- 456 existing residential building are required to show compliance with the authority having 457 jurisdiction.
- 458 2.6 If any existing building after additions or alterations exceeds the threshold defined in
 459 clause 2.2 of this document, it shall comply with the provisions of this code. Compliance
 460 shall be demonstrated in either of the following ways:
- 461 2.6.1 The addition shall comply with the applicable requirements, or
- 462 2.6.2 The addition, together with the entire existing building, shall comply with the
 463 requirements of this Code as applicable to the entire building, as if it were a new
 464 building.
- Exceptions to clause 2.6: When space conditioning is provided by existing systems and
 equipment, the existing systems and equipment need not comply with this code.
 However, any new equipment installed must comply with specific requirements
 applicable to that equipment.
- 469 2.7 The following codes, programs, and policies will take precedence over the code in470 case of conflict:
- 471 2.7.1 Any policy notified as taking precedence over this Code, or any other rules on safety,
 472 security, health, or environment by Central, State, or Local Government.
- 473 2.7.2 BEE's Standards and Labelling for appliances and Star Rating Program for buildings, or
 474 any reference standard prescribed by the Code, provided both or either are more
 475 stringent than the requirements of this Code.
- 476 2.8 The code prescribes the three levels of energy conservation and sustainability:
- 477 2.8.1 ENS compliance: ENS compliance Buildings shall demonstrate compliance by
 478 adopting the mandatory requirements listed under each of the sections of this code.
- 479 2.8.2 ENS+ compliance: ENS+ compliance Buildings shall demonstrate compliance by adopting the mandatory requirements and gaining required incremental points from each of the sections of this code.
- 482 2.8.3 Super ENS compliance: Super ENS compliance Buildings shall demonstrate compliance
 483 by adopting the mandatory requirements and gaining required incremental points
 484 from each of the sections of this code.

485 CHAPTER 3: CODE COMPLIANCE

- 486 3.1 The mandatory provisions as per chapters 4, 5, 6, 7 and 8 are applicable to all building
 487 categories as per clause 2.2.
- 488 3.2 If a building project has more than one building block, each building block is required
 489 to comply with the code unless specified otherwise.
- 490 3.3 The code also provides incremental provisions should the project want to demonstrate
 491 enhanced compliance; ENS + and Super ENS as per Table 1
- 492

Table 1: Points required to achieve ENS+ and Super ENS compliance

Project Category	ENS+	Super ENS
All residential buildings	30% of all the total points applicable in each section (4.3, 5.3.1, 5.3.2, 5.3.3, 5.3.4, 6.3, 7.3, 8.3)	50% of all the total points applicable in each section (4.3, 5.3.1, 5.3.2, 5.3.3, 5.3.4, 6.3, 7.3, 8.3)

493 3.4 A summary of the incremental points available in each chapter is given in Table 2

494

Table 2: Maximum incremental points in each charter

494		Table 2: Maximum inc	remental points in each ch	napter	
	Section	Provisions	Maximum Incremental Points available	Compliance for ENS+ (30% of maximum incremental points available)	Compliance for Super ENS (50% of maximum incremental points available)
	4.3	Sustainable Site C Management	30	9	15
	4.3.1	Landscaping	16		
	4.3.2	Mitigation of Urban Heat Island	14		
	5.3.1	Building Envelope	40	12	20
	5.3.1.1	Roof	4		
	5.3.1.2 / 5.3.1.3	Building envelope (except roof)	36		
	5.3.2	Building Services	28	8	14
	5.3.2.1	Common area and exterior lighting	6		
	5.3.2.2	Elevators	9		
l l	5.3.2.3	Pumps	8		
K	5.3.2.4	Electrical Systems	5		
NC N	5.3.3	Indoor Electrical End-use	42	13	21
×	5.3.3.1	Indoor Lighting	8		
$\langle \rangle$	5.3.3.2	Comfort Systems	34		
$\mathbf{\nabla}$	5.3.4	Renewable Energy Systems	10	3	5
	5.3.4.1	Solar Water Heating	5		
	5.3.4.2	Solar Photo Voltaic	5		

6.3	Water Conservation and management	43	13	22	
6.3.1	Site Water Use Reduction	17			e
6.3.2	Building Water Use Reduction	26			
7.3	Waste Management	7	2	4	
7.3.1	Construction Waste management	2			
7.3.2	Post Construction Waste Management	5		R	
8.3	Indoor Environmental Quality (IEQ)	10	3	5	
8.3.1	Cross Ventilation	4			
8.3.2	Daylight Availability (useful daylight illuminance)	4	2		
8.3.3	Air Quality in Car Parking (CO sensor)	2	\sim		

496 3.5 A building shall comply if the minimum specifications of all products installed under any
 497 category are met as prescribed by this code unless specified otherwise.

498 3.6 In a mixed-use building, having both commercial and residential building use, each
499 category of a building use must be classified separately, and –

5003.6.1The residential above grade floor area as defined in clause 2.2.1 shall comply with this501code.

5023.6.2Basement and common area services, designed for a particular building use or503documented with respective buildings for compliance with authority having504jurisdiction, needs to show compliance with the clauses for the respective building505requirement.

506 Constant of the second sec

507 CHAPTER 4: SUSTAINABLE SITE MANAGEMENT

508 **4.1 SCOPE**

5094.1.1The chapter provides requirements to minimize the impact of construction activity510on the natural terrain and topography of the site during the construction phase. It511consists of four parts- Site Preservation, Universal Accessibility, Landscaping and512Mitigating Urban Heat Island.

513 4.2 MANDATORY PROVISIONS

514 4.2.1 SITE PRESERVATION

4.2.1.1 Ensure to protect or preserve existing mature trees naturally or as per guidelines of
byelaws/authority, whichever is more stringent.

517 4.2.1.2 Preservation of Topsoil:

- 518a)Topsoil up to 150-200 mm (6-8 inches) must be preserved within the site to preserve519the fertility of the soil.
- 520 b) The stored topsoil shall be used as finished grade for planting areas within the site 521 or outside. In case the stored topsoil is not being used within the site, proper reuse 522 of the soil must be ensured.
- 5234.2.1.3In compliance with the Model Building Byelaws, 2016, construction shall not hinder524existing areas like water bodies, power or communication lines, sewerage lines that525are located on or adjacent to the project site.
- 526 4.2.2 UNIVERSAL ACCESSIBILITY
- 5274.2.2.1Residential buildings shall be universally accessible with special provisions for
children, the elderly and differently abled people in accordance with Chapter 8 of
the Model Building Bylaws, 2016.

530 4.2.3 LANDSCAPING

- 4.2.3.1 Minimise disturbances to the topography & gradient of the site by retaining natural
 features of the site and developing vegetated landscaped spaces minimum of
 20% of the total landscaped area.
- 5344.2.3.2In compliance with the National Building Code, 2016, If turf grasses are to be used,535they should not be planted on more than 30% of the total landscaped area.
- 4.2.3.3 In compliance with the National Building Code, 2016 to preserve local biodiversity
 and ecology, a minimum of 30% of the landscaped area must be planted with
 native/adaptive species of plants/trees. The choice of species for plantation shall
 be as per Section 8 of the Urban Greening Guidelines, 2014 of the Ministry of
 Housing and Urban Affairs⁸.
- 5414.2.3.4In compliance with the notification of the Ministry of Environment, Forest and542Climate Change Notification dated 25th February 2022 a minimum of 1 tree for

⁸ Source: https://mohua.gov.in/upload/uploadfiles/files/G%20G%202014(2).pdf

- 543 every 80 sqm. of land should be planted and maintained to ensure at least 10% of 544 plot area under tree cover. The existing trees will be counted for this purpose.
- 5454.2.3.5In compliance with the Model Building Byelaws, 2016 compensatory Plantation for546felled/transplanted trees in the ratio 1:3 within the premises under consideration547must be ensured.

5484.2.4MITIGATING URBAN HEAT ISLAND

- 5494.2.4.1Limiting the net paved area of the site under parking, roads, paths, or any other550use so as not to exceed 25% of the site area, as per the National Building Code,5512016.
- 5524.2.4.2More than 50% of the total paved area shall have pervious paving/grass553pavers/open grid pavements, as per National Building Code 2016.

554 4.3 INCREMENTAL PROVISIONS (MAXIMUM 30 POINTS)

555 4.3.1 LANDSCAPING (MAXIMUM 16 POINTS)

- 5564.3.1.1Minimise disturbances to the topography & gradient of the site by retaining natural557features of the site and developing vegetated landscaped spaces as per Table 3
- 558

Table 3: Points for increasing vegetated area on site

Minimum Vegetated Area	Incremental Points
30% of the total landscaped area	6
40% of the total landscaped area	8

559 4.3.1.2 Minimise the plating of turf grasses as per Table 4

15% of the landscaped area

560

Table 4: Points for Reducing th	ne Turf Area
Maximum Turf Area	Incremental Points
20% of the landscaped area	2

561 4.3.1.3 Increase the plantation of native/ adaptive species of plants/ trees as per Table 5

562

Table 5: Points for Increasing the Landscaped Area planted with Native Plant Species

4

Minimum Area with Native Plants Species	Incremental Points
40% of the landscaped area	2
50% of the landscaped area	4

563

564

4.3.2.1

4.3.2 MITIGATION OF URBAN HEAT ISLAND (MAXIMUM 14 POINTS)

- 565 566
- Limiting the net paved area of the site under parking, roads, paths, or any other as per Table 6

Upto 20% of the site area	4
Upto 15% of the site area	6

569 4.3.2.2 Increase the pervious paving/grass pavers/open grid pavements as per Table 7

the spectrum

Table 7: Points for Increasing Pervious Pavi	
	DI

Minimum Pervious Paving	Incremental Points
60% of the total paved area	5
70% of the total paved area	8
70% of the total paved area	

572 CHAPTER 5: ENERGY MANAGEMENT AND CONSERVATION

573 **5.1 SCOPE**

574 5.1.1 The chapter provides requirements for energy management and conservation in a 575 building post-occupancy through passive measures, active measures, and renewable 576 energy integration. It consists of four parts – building envelope, building services, indoor 577 electrical end use and renewable energy.

578 **5.2 MANDATORY PROVISIONS**

579 5.2.1 BUILDING ENVELOPE

580 5.2.1.1 OPENABLE WINDOW-TO-FLOOR AREA RATIO

581 The openable window-to-floor area ratio (WFR_{op}), (refer Daylight availability (Useful daylight 582 illuminance) (Maximum 4 Points)

- 5838.1.1.1The building shall comply with the useful daylight illuminance requirement as584prescribed by the ECBC 2017, clause no 4.2.3. Ensure above-grade floor areas shall585meet or exceed the useful daylight illuminance (UDI) area requirements listed in586Table 56 for 90% of the potential daylit time in a year. (Refer to Error! Not a valid587bookmark self-reference.). Incremental points can be achieved as per Table 42.
- 588

Table 42: Daylight Requirement

Provision	Incremental
	Points
40% of the regularly occupied spaces meeting the UDI requirement	2
50% of the regularly occupied spaces meeting the UDI requirement	3
60% of the regularly occupied spaces meeting the UDI requirement	4

589 8.1.2 AIR QUALITY IN UNDERGROUND PARKING AREA (MAXIMUM POINTS 2)

5908.1.2.1Install a demand control ventilation system to limit CO levels in the underground591parking area to ensure safety and air quality. The location of sensors should be592followed as prescribed by the NBC 2016, Volume 2, Part 8, section 3, clause no59311.5.4. Incremental points can be achieved as per Table 43.

594

Table 43: Air Quality in Car Parking

Provision	Incremental Points
CO sensors are installed to control the ventilation system	2
to limit CO level	

- 596 Chapter 9: Calculations and Formula) for individual building blocks, shall comply with the
- 597 values⁹ given in Table 8.

Table 8: Minimum requirement of window-to-floor area ratio (WFRop)

Climatic zone	Minimum WFR _{op} (%)			
Composite	12.50			
Hot-Dry	10.00			
Warm-Humid	16.66			
Temperate	12.50			
Cold	8.33			

599 SOURCE: Adapted from Bureau of Indian Standards (BIS). 2016. National Building Code of India 2016. New Delhi: BIS.

5.2.1.2 VISIBLE LIGHT TRANSMITTANCE 600

601 The glass used in non-opaque building envelope components (transparent/translucent panels

602 in windows, doors, etc.) shall comply with the requirements given in Table 9.

598

Table 9: Minimum visible lig	ght transmittance	(VLT) requirement

Window-to-wall ratio (WWR) ¹⁰		Minimum VLT ¹¹
0-0.30		0.27
0.31-0.40		0.20
0.41-0.50		0.16
0.51—0.60	5	0.13
0.61—0.70		0.11

604 SOURCE: Bureau of Indian Standards (BIS). 2016. National Building Code of India 2016. New Delhi: BIS.

THERMAL TRANSMITTANCE OF ROOF (UROOF) 605 5.2.1.3

606 Thermal transmittance of the roof shall comply with the maximum U_{roof} value of 1.2 W/m²·K as 607 prescribed in clause 9.3 of this code.

608	5.2.1.4	RESIDENTIAL	ENVELC	OPE TRAN	SMITTANCE	VALUE (RETV) FOR BUILDING
609		ENVELOPE (E	XCEPT R	OOF) FOR	FOUR CLIMA	TE ZONES, NA	MELY, COMPOSITE
610		CLIMATE, HO	OT-DRY	CLIMATE,	WARM-HUM	ID CLIMATE,	AND TEMPERATE
611		CLIMATE					

The RETV for the building envelope (except the roof) for four climate zones, namely, Composite 612

613 Climate, Hot-Dry Climate, Warm-Humid Climate, and Temperate Climate, shall comply with

614 the maximum¹² RETV value of 15 W/m^2 as prescribed in clause 9.5 of this code.

 $^{^{\}circ}$ To comply with the Code, WFR_{op} (%) values shall be rounded off to two decimal places in accordance with IS 2: 1960 'Rules for rounding off numerical values'.

¹⁰ To comply with the Code, VLT values shall be rounded off to two decimal places in accordance with IS 2: 1960 'Rules for rounding off numerical values'.

¹¹ To comply with the Code, WWR values shall be rounded off to two decimal places in accordance with IS 2: 1960 'Rules for rounding off numerical values'.

¹² BEE plans to improve the RETV norm to 12 W/m² in the near future and the building industry and regulating agencies are encouraged to aim for it.

615 5.2.1.5 TRANSMITTANCE OF BUILDING ENVELOPE (EXCEPT ROOF) FOR COLD CLIMATE 616 (UENVELOPE, COLD)

617 For Cold Climate Zone, the thermal transmittance of the building envelope (except the roof)

- 618 for the cold climate shall comply with the maximum value of 1.8 W/m2·K as prescribed in clause 9.7 of this code.
- 619
- 620 5.2.2 BUILDING SERVICES
- 621 5.2.2.1 POWER FACTOR CORRECTION
- 622 All 3 phase power systems shall be designed to maintain a power factor of 0.97 at the point of 623 connection.
- 624 5.2.2.2 ENERGY MONITORING
- A. Residential buildings exceeding the threshold defined as per clause 2.2 of this code 625 626 shall monitor the electrical energy use for each of the following separately:
- 627 i. Total electrical energy
- 628 ii. Electricity consumption of the following applicable end-use 629
 - a) Common area lighting (Outdoor lighting, corridor lighting, basement lighting)
- b) Elevators 631

630

634

- c) Water pumps 632
- d) Basement car parking ventilation system 633
 - e) Electricity generated from power back-up.
 - f) Electricity generated through renewable energy systems.
- 636 g) Lift pressurization system
- B. The electrical energy use shall be recorded at a minimum interval of 15 minutes and 637 reported at least on an hourly, daily, monthly and annual basis. The monitoring 638 equipment shall be capable of transmitting the data to the diaital control system/ 639 energy monitoring information system. The digital control system shall be capable of 640 maintaining all data collected for a minimum period of 36 months. 641
- 642 a. The metering shall display current (in each phase and the neutral), voltage (between phases and between each phase and neutral), and 643 644 total harmonic distortion (THD) as a percentage of total current in case of 645 transformers.
- ELECTRIC VEHICLE CHARGING SYSTEM 646 5.2.2.3
- 647 If an Electric Vehicle Charging Infrastructure is installed on the premises, it shall be as per 648 revised guidelines issued by Ministry of Power for Charging Infrastructure for Electric Vehicles 649 (EV) on 15th Jan 2022, or any subsequent amendments.
- 650 5.2.2.4 ELECTRIC SYSTEMS
- 651 A. The power cabling shall be sized so that the distribution losses shall not exceed 3% of the total power usage of the building. A record of design calculation for the losses shall 652 be maintained and the load calculation up to the panel level shall be documented. 653

B. Voltage drop for feeders shall not exceed 2% at design load. Voltage drop for branch
 circuit shall not exceed 3% at design load.

656 5.2.2.5 COMMON AREA AND EXTERIOR LIGHTING (IF APPLICABLE)

- A. The Lighting power density (LPD) and Luminous efficacy (LE) of permanently installed
 lighting fixtures in common area shall meet the requirements of either maximum LPD or
 minimum LE given in Table 10.
- 660

Table	10.	Common	Area	Lighting
Tuble	10.	Common	Aleu	Lighting

Maximum LPD (in W/m ²)	Minimum luminous efficacy (lm/W)
	All the permanently installed lighting
3.0	fixtures shall use lamps with an efficacy
	of at least 85 lumens per Watt
	All the permanently installed lighting
1.0	fixtures shall use lamps with an efficacy
	of at least 85 lumens per Watt
	3.0

661

B. In case of the exterior lighting load being more than 100 W, the permanently installed
 lighting fixtures shall use lamps with an efficacy of at least 85 lumens per Watt or meet
 the maximum LPD requirements given in Table 11.

665

Table 11: Outdoor Lighting Requirement

Maximum LPD (in W/m2)
1.6
2.0
10.0
0.5
9.0

666

669

670

671

672

673

674

675

667 5.2.2.6 ELEVATORS, IF APPLICABLE

- 668 Elevators installed in the building shall meet all the following requirements:
 - i. Install high-efficacy lamps for lift car lighting having a minimum luminous efficacy of 85 lm/W.
 - ii. Install automatic switch-off controls for lighting and fan inside the lift car when are not occupied.
 - iii, Install minimum class IE 3 high-efficiency motors.
 - iv. Group automatic operation of two or more elevators coordinated by supervisory control

676 5.2.2.7 PUMPS, IF APPLICABLE

Pumps that are either hydro-pneumatic having a minimum mechanical efficiency of 60% or
BEE 4-star rated shall be installed in the building.

A. Power transformers with a minimum efficiency of 50% and full load rating shall be
 installed. The permissible loss shall not exceed the values listed in Table 12 for dry-type
 transformers and the BEE 4-star rating in

683 B. Table 13 for oil-type transformers.

- C. All measurements of losses shall be carried out by using calibrated digital meters of class 0.5 or better accuracy and certified by the manufacturer. All transformers of the capacity of 500 kVA and above would be equipped with additional metering class current transformers (CTs) and potential transformers (PTs) in addition to the

Table 12: P	ermissible	Limit for	Dry-Type	Transformers
-------------	------------	-----------	----------	--------------

requirements of Utilities so that periodic loss monitoring studies may be carried out.

Rating kVA	Max. Losses at 50% loading W*	Max. Losses at 100% loading W*	Max. Losses at 50% loading W*	Max. Losses at 100% loading W*
	Up to 22 kV	class	33 kV c	lass
100	940	2400	1120	2400
160	1290	3300	1420	3300
200	1500	3800	1750	4000
250	1700	4320	1970	4600
315	2000	5040	2400	5400
400	2380	6040	2900	6800
500	2800	7250	3300	7800
630	3340	8820	3950	9200
800	3880	10240	4650	11400
1000	4500	12000	5300	12800
1250	5190	13870	6250	14500
1600	6320	16800	7500	18000
2000	7500	20000	8880	21400
2500	9250	24750	10750	26500

*The values as per Indian Standard/BEE Standard & Labeling notification for dry type transformer corresponding to values in this table will supersede as and when the Indian standards/ BEE Standard & Labeling notifications are published.

Table 13:	Permissible	Limit for	Oil-Type	Transformers
-----------	-------------	-----------	----------	--------------

Max. Total Loss (W)							
Rating	Impedance	BEE 1 S	BEE 1 Star BEE 3 Star		BEE 5 Star		
(kVA)	(%)	50 % Load	100% Load	50 % Load	100% Load	50 % Load	100% Load
16	4.5	135	440	108	364	87	301
25	4.5	190	635	158	541	128	448
63	4.5	340	1,140	270	956	219	791
100	4.5	475	1,650	392	1,365	317	1,130
160	4.5	670	1,950	513	1,547	416	1,281
200	4.5	780	2,300	603	1,911	488	1,582
250	4.5	980	2,930	864	2,488	761	2,113
315	4.5	1,025	3,100	890	2,440	772	1,920
400	4.5	1,225	3,450	1,080	3,214	951	2,994
500	4.5	1,510	4,300	1,354	3,909	1,215	3,554
630	4.5	1,860	5,300	1,637	4,438	1,441	3,717
1,000	5.0	2,790	7,700	2,460	6,364	2,170	5,259
1,250	5.0	3,300	9,200	3,142	7,670	2,991	6,394
1,600	6.25	4,200	11,800	3,753	10,821	3,353	9,924
2,000	6.25	5,050	15,000	4,543	13,254	4,088	11,711
2,500	6.25	6,150	18,500	5,660	16,554	5,209	14,813

Total loss values given in the above table are applicable for thermal classes E, B and F, and have component of load loss at reference temperature according to Clause 17 of IS 1180 i.e., average winding temperature rise as given in Column 2 of Table 8.2 plus 300C. An increase of 7% in total for thermal class H is allowed.

Permissible total loss values shall not exceed:

- 5% of the maximum total loss values mentioned in IS 1180 for oil type transformers in voltage class above 11 kV but not more than 22 kV
- 7.5% of the maximum total loss values mentioned in above IS 1180 for oil-type transformers in voltage class above 22 kV and up to and including 33 kV

692

693 5.2.3 INDOOR ELECTRICAL END USE (IF APPLICABLE)

- 694 5.2.3.1 INDOOR LIGHTING
- All the lighting fixtures shall have lamps with a luminous efficacy of a minimum of 85 lm/W installed in all the locations.

697 5.2.3.2 COMFORT SYSTEM

698 A. Ceiling Fans:

All ceiling fans installed in all the spaces in all the dwelling units shall have a minimum of 3 star for all sweep sizes.

702 B. Air Conditioners:

All the bedrooms having air conditioners in all the dwelling units (either unitary, split, VRF, or centralized plant) shall have the following specifications and shall meet or exceed the minimum efficiency requirements under BEE Standards and Labelling Program as and when updated by BEE.

Unitary Type: 5 Star
Split AC: 3 Star
VRF: 3.28 EER, or 4.36 IEER¹³ (BEE Standards and Labelling requirements of 3 star for VRF shall take precedence over the current minimum requirement)
Chiller: 3 Star
In case, air conditioners installed are of mixed type, the calculation of points will be based on clause number B of this document.

715 5.2.4 RENEWABLE ENERGY SYSTEMS

The renewable energy systems, Solar Water Heating as per section 5.2.4.1 or Solar Photo-Voltaic as per section 5.2.4.2 to be installed collectively, or any of them, at the project site as

- 718 per the total renewable energy installation requirement.
- 719 5.2.4.1 SOLAR WATER HEATING
- The installed solar water heater shall meet the minimum efficiency level mentioned in IS 13129 Part (1&2) and for the evacuated tube collector the storage tanks shall meet the IS 16542:2016, tubes shall meet IS 16543:2016 and IS 16544:2016 for the complete system, and shall comply with requirements as Solar water Heating system of minimum BEE 3-star label installed in at least 10% of the plot area¹⁴

725 5.2.4.2 SOLAR PHOTO-VOLTAIC

726 The Renewable Energy Generation Zone (REGZ) shall be free of any obstructions within its

- 727 boundaries and from shadows cast by objects adjacent to the zone. It shall comply with the
- requirements of installing Solar photo-voltaic: Equivalent to at least 10% of the plot area.¹⁵

729 **5.3 INCREMENTAL PROVISIONS (MAXIMUM 120 POINTS)**

730 5.3.1 BUILDING ENVELOPE (MAXIMUM 40 POINTS)

- 731 5.3.1.1 THERMAL TRANSMITTANCE OF ROOF (UROOF) (MAXIMUM 4 POINTS)
- The thermal transmittance of the roof (U_{roof}) shall comply with the requirement as per Table 14.

¹³ The revised EER and IEER values as per Indian Standard for VRF corresponding to values will supersede as and when the revised standards are published

^{14 100} lpd= 3 m² area as per MNRE guidelines

 $^{^{15}}$ 1 kW_p = 10 m² area as per MNRE guidelines

Table 14: Points for Thermal Transmittance of Roof (Uroof)

U _{roof} (W/m ² ·K)	Formula for points calculation	Incremental Points
$0.28 \le U_{roof} < 1.2$	(1.2 - U _{roof}) / 0.23	Up to 4
RETV < 0.28	-	4

734

7355.3.1.2RESIDENTIAL ENVELOPE TRANSMITTANCE VALUE (RETV) FOR BUILDING736ENVELOPE (EXCEPT ROOF) FOR FOUR CLIMATE ZONES, NAMELY, COMPOSITE737CLIMATE, HOT-DRY CLIMATE, WARM-HUMID CLIMATE, AND TEMPERATE738CLIMATE16 (MAXIMUM 36 POINTS)

The RETV for building envelope (except roof) for four climate zones, namely, composite
 climate, Hot-Dry climate, Warm-Humid climate, and Temperate climate, shall comply with the
 requirement as per Table 15.

	Table 15: Points for improved RETV	
RETV (W/m ²)	Formula for points calculation	Incremental Points
12 ≤ RETV < 15	30 – 2 x (RETV)	Up to 6
6 ≤ RETV < 12	66 – 5 x (RETV)	Up to 36
RETV < 6		36

743

742

7445.3.1.3THERMAL TRANSMITTANCE OF BUILDING ENVELOPE (EXCEPT ROOF) FOR
COLD CLIMATE (UENVELOPE, COLD) (MAXIMUM 36 POINTS)

The thermal transmittance of the building envelope (except the roof) for cold climate (UENVELOPE,COLD), shall comply with the requirement as per Table 16.

748

749 Table 16: Points for Thermal transmittance of the building envelope (except the roof) for cold climate (UENVELOPE, COLD)

Uenvelope, cold (W/m ² .K)	Formula for points calculation	Incremental Points
$1.32 \leq U_{envelope, cold} < 1.8$	22.5 - 12.5 x (U _{envelope, cold})	Up to 6
$0.36 \le U_{envelope, cold} \le 1.32$	47.25 – 31.25 x (Uenvelope, cold)	Up to 36
Uenvelope, cold < 0.36	_	36

750

751 5.3.2 BUILDING SERVICES (MAXIMUM 28 POINTS)

752 5.3.2.1 COMMON AREA AND EXTERIOR LIGHTING (MAXIMUM 6 POINTS)

753 754

755

A. All permanent lighting fixtures with a lamp luminous efficacy of at least 95 lm/Watt shall be installed in the areas, as per Table 17.

Table 17: Points for Common Area Lighting

Area/Zones	Incremental Points
Corridor parking and stilt parking	1
Basement Lighting	1

¹⁶ The project shall meet the requirements of either section 6.4.2 or 6.4.3 depending on the climatic zone

Exterior Lighting Areas		1
-------------------------	--	---

- 757 B. All permanent lighting fixtures excluding emergency lighting installed in areas as per
 758 Table 18 shall:
- 759 i. Have a luminous efficacy of 105 lm/W
- ii. Be controlled by a photo sensor or astronomical time switch that is capable of automatically turning off the exterior lighting when daylight is available, or the lighting is not required.

7	6	3

Table 18: Points for automatic control of exteri	ior lights
Area/Zones	Incremental Points
Corridor parking and stilt parking	2
Basement Lighting	2
Exterior Lighting Areas	2

764

767

765 5.3.2.2 ELEVATORS (MAXIMUM 9 POINTS)

The installed elevators shall comply with the requirements as per Table 19

Table 19: Points for Elevators	\checkmark
Provisions	Incremental Points
Installing variable voltage variable frequency dives	4
Installing Regenerative Drives	3
Installing IE4 Motors	2

768

769 5.3.2.3 PUMPS (MAXIMUM 8 POINTS)

The installed pumps shall comply with the requirements as per Table 20

771

		-1				-
Table	20:	Points	for	Pum	ps	

Provisions	Incremental Points
Installation of BEE 5-star rated pumps	5
Installation of a hydro-pneumatic system for water pumping having minimum mechanical efficiency of 70%	3

772 5.3.2.4 ELECTRICAL SYSTEMS (MAXIMUM 5 POINTS)

- The installed electrical system shall comply with the requirements as per Table 21
- 774

Table 21: Points for Electrical System

Provisions	Incremental Points
Providing all oil-type transformers with 5-star ratings	5

775

776 5.3.3 INDOOR ELECTRICAL END-USE (IF APPLICABLE) (MAXIMUM 42 POINTS)

777 5.3.3.1 INDOOR LIGHTING (MAXIMUM 8 POINTS)

All indoor lighting fixtures installed in all dwelling units shall have lamps luminous efficacy
 as per Table 22.

Table 22: Points for Lamp Lumen Efficacy of Indoor Lighting

Provisions	Incremental Points
Lamp Lumen Efficacy >95 Lm/W	3
Lamp Lumen Efficacy >105 Lm/W	8

781

782 5.3.3.2 COMFORT SYSTEM (MAXIMUM 34 POINTS)

A. Ceiling Fans installed in all the bedrooms and hall in all the dwelling units shall comply 783 with the requirements as per Table 23 784

785

Table 23: Points for BEE star rated ceiling fans

Provisions	Incremental Points
Ceiling fans in all the bedrooms and hall with BEE 4-Star	
Ceiling fans in all the bedrooms and hall with BEE 5-Star	4

786

B. Air Conditioners (either unitary, split, VRF or centralized plant) installed in all the 787 788 bedrooms in all the dwelling units, shall comply with requirements as per Table 24 and 789 shall meet or exceed the minimum efficiency requirements under BEE Standards and 790 Labelling Program as and when updated by BEE.

791	Table 24: Points for BEE Star Rating of Air-Conditioners	
	Provisions	Incremental Points
	a) Split AC: 4-Star	9
	b) VRF: 3.6 EER, however, whenever BEE Star labelling for VRF	
	is launched, Star 4 will be applicable (BEE Standards and	
	Labelling requirements of 4-star for VRF shall take	
	precedence)	
	c) Chiller: 4-Star	
	a) Split AC: 5-Star	30
	b) VRF: 3.8 EER, however, whenever BEE Star labelling for VRF	
	is launched, Star 5 will be applicable (BEE Standards and	
	Labelling requirements of 5-star for VRF shall take	
	precedence)	
	c) Chiller: 5-Star	
792	S	

172		
793	In case, the air conditioners installed are of mixed types, the points shall be	
794	calculated based on the following formula:	
795	Points achieved for AC	
796		
797		

798 5.3.4 **RENEWABLE ENERGY SYSTEMS (MAXIMUM 10 POINTS)**

799 The renewable energy systems, Solar Water Heating as per section 5.2.4.1 and/or Solar Photo-800 Voltaic as per section 5.2.4.2 to be installed collectively or any of them, at the project site as 801 per the total renewable energy installation requirement.

	Provisions	Incremental Points
	Installing Solar Water Heating system of minimum BEE 3-star label: Equivalent to at least 13% of the plot area ¹⁷	4
	and / or	
	Installing Solar photo-voltaic: Equivalent to at least 13% of the plot area 18	8
	Installing Solar Water Heating system of minimum BEE 3-star label: Equivalent to at least 16% of the plot area ¹⁹	10
	and/or	
	Installing Solar photo-voltaic: Equivalent to at least $\frac{16\%}{16\%}$ of the plot area^{20}	
803 804	FOR STANFINOLI	
0,6		
	¹⁷ 100 lpd= 3 m ² area as per MNRE guidelines	

- ¹⁷ 100 lpd= 3 m² area as per MNRE guidelines
- $^{18}\,1kW_{\text{p}}\text{=}10m^2$ area as per MNRE guidelines
- ¹⁹ 100 lpd= 3 m² area as per MNRE guidelines
- $^{\rm 20}$ 1kW_p=10m^2 area as per MNRE guidelines

CHAPTER 6: WATER CONSERVATION AND MANAGEMENT 805

806 6.1 SCOPE

807 The chapter provides requirements for water conservation and management post-6.1.1 808 occupancy of a building to reduce water demand and optimise the supply of water. 809 It consists of five parts- site water use reduction, building water use reduction, water 810 usage monitoring, rainwater harvesting and recycle & reuse of wastewater.

811 **6.2 MANDATORY PROVISIONS**

812 6.2.1 SITE WATER USE REDUCTION

- 813 6.2.1.1 Up to 40% of the total water required for irrigation shall be provided through 814 recycled water or rainwater harvesting.
- 815 6.2.1.2 As per the National Building Code, 2016, irrigation systems must be designed in a manner to provide 8 litres/sqm/day of water to all landscaped areas. 816
- 817 6.2.1.3 At least 70% of the landscaped planting beds to have drip irrigation, to prevent 818 evaporation.
- 819 6.2.1.4 At least 60% of the planted turf grasses must be provided with sprinkler systems.

820 6.2.2 BUILDING WATER USE REDUCTION

821 6.2.2.1 SANITARY FITTINGS

822 Sanitary Fittings such as faucets (taps) and showerheads for their performance based on 823 water efficiency shall comply with the specifications of 1 star rating criteria of the fixtures, laid 824 down in IS 17650 Part 1, 2021, as specified in Table 26: Table 26: Sanitary Fittings

	Table 20. Sumary mings						
SI No.	Water Consumption Per Unit	Water Consumption Per Unit	Water Eff	3 Criteria			
			1- Star	2- Stars	3- Stars		
(1)	(2)	(3)	(4)	(5)	(6)		
i)	Metered faucets for basin use	litres/use	Not more than 1.0	Not more than 0.8	Not more than 0.6		
ii)	Wash basin/ lavatory faucet (also applies to sensor faucets)	litres/use	Not more than 8.0	Not more than 6.0	Not more than 3.0		
iii)	Sink faucet	litres/use	Not more than 8.0	Not more than 6.0	Not more than 4.5		
i∨)	Overhead shower	litres/use	Not more than 10.0	Not more than 8.0	Not more than 6.8		
v)	Hans held shower	litres/use	Not more than 8.0	Not more than 6.0	Not more than 4.0		
∨i)	Handheld ablution spray	litres/use	Not more than 6.0	Not more than 5.0	Not more than 4.0		

827 6.2.2.2 SANITARY WARE

828 Sanitary ware such as water closets, squatting pans, flush valves, flushing cisterns, and urinals 829 for their performance based on water efficiency shall comply with the specifications as 830 outlined for 1 star rating in IS 17650 Part 2, 2021, as specified in Table 27:

831

Table 27: Sanitary Wares						
SI No.	Product	Water Consumption Per Unit	Rating Criteria			
			1-Star	2- Stars	3-Stars	
(1)	(2)	(3)	(4)	(5)	(6)	
i)	Water closet, squatting pan, flushing cistern, and flush valve	a) Full flush, liters/flush b) Reduced	Not more than 6.01 per flush Not more than	Not more than 4.8 / per flush Not more than		
ii)	Urinal	flush, liters/flush liters/flush	3.0 / per flush Not more than 3.0 / per flush (inclusive of pre-flush and post-flush, in case of sensor urinal)	2.8 / per flush Not more than 2.0 / per flush (inclusive of pre-flush and post-flush, in case of sensor urinal)	2.0 / per flush Not more than 1.0 / per flush (inclusive of pre-flush and post-flush, in case of sensor urinal)	

832

833 6.2.3 WATER USAGE MONITORING

- 834 6.2.3.1 Buildings exceeding the threshold defined under clause 2.2 of this code shall install
 835 smart meters and monitor the water use for each of the following separately:
- 836 A. Total water consumption of the building complex

837B. Water consumption of the following:838I. Common Landscaping areas839II. Common area water usage (con

- II. Common area water usage (common toilets, housekeeping, etc.)
- 840

844

845

846

847

848

849

850

841 6.2.4 RAINWATER HARVESTING

- 842 6.2.4.1 Residential buildings shall have a rainwater harvesting system consisting of:
- a) Roof catchment
 - b) Gutters
 - c) Downpipes
 - d) Rainwater/ Storm water drains
 - e) Filter Chamber
 - f) Storage Tanks/ Pits/ Sumps.
 - g) Groundwater recharge structures like pits, trenches, tube wells or a combination of above structures.

6.2.4.2 At least 80% of the rainwater (adjusting the coefficient) falling on the roof of the building shall be harvested and stored in a tank for reuse in households through a provision of separate water tanks and pipelines to avoid mixing with potable municipal water supply.

- 855 6.2.4.3 The remaining rainwater harvested should be linked to the tube well bore in the 856 premise through a pipeline after filtering of the rainwater.
- 857

858 6.2.5 RECYCLE & REUSE OF WASTEWATER

859 6.2.5.1 Residential buildings shall install on-site water treatment systems for greywater
860 recycling and reuse, catering to at least 50% of the total wastewater generated
861 from toilets and kitchens.

862 6.2.5.2 Separate storage tanks and plumbing lines shall be provided for the reuse of
863 treated water from the on-site wastewater treatment plant following the criteria
864 laid in Section 2 of the National Building Code of India, 2016.

865 6.2.6 WATER QUALITY REQUIREMENTS

- 8666.2.6.1Potable/domestic water quality shall comply with the requirements of IS86710500:2012, Drinking Water Specification, as given in Tables 1 to 4.
- 6.2.6.2 Varied recycled applications of treated used water quality such as toilet flushing, vehicle exterior washing, non-contact impoundments, and landscape irrigation shall comply with the requirements of CPHEEO manual on Sewerage and Sewage
 871 Treatment Systems: 2013, Chapter 7 Table 7.19 issued by Ministry of Housing and Urban Affairs.
- 873

6.3 INCREMENTAL PROVISIONS (MAXIMUM 43 POINTS)

875 6.3.1 SITE WATER USE REDUCTION (MAXIMUM 17 POINTS)

876 6.3.1.1 Recycled/harvested water shall provide water for irrigation as per the 877 requirements in Table 28.

378	Table 28: Points for recycled water used for irrigation		
	Provision	Incremental Points	
	Upto 50% of the total irrigation requirement	5	
	Upto 60% of the total irrigation requirement	8	
		I	

879 880 6.3.1.2 Planting beds shall be provided with a drip irrigation system and shall comply with the requirements as per Table 29.

Table 29: Points for Drip irrigation System

	Provision	Incremental Points
¥	A minimum of 80% of the planting bed area has drip irrigation	3
	A minimum of 90% of the planting bed area has drip irrigation	5

882 883 6.3.1.3 The turf area shall be provided with sprinkler systems and shall comply with requirements as per Table 30.

⁸⁸¹

Table 30: Points for Sprinkler Irrigation System

Provision	Incremental Points
A minimum of 70% of the turf area has a sprinkler system	2
A minimum of 80% of the turf area has a sprinkler system	4

886

887 6.3.2 BUILDING WATER USE REDUCTION (MAXIMUM 26 POINTS)

888 6.3.2.1 RECYCLE AND REUSE OF WATER

889 Recycle and reuse of water shall be ensured on site and shall comply with the specification 890 as per Table 31.

891

892

Table 31: Points for Reclamation of Wastewater

Provision	Incremental Points
A minimum of 70% of wastewater reclaimed	6
A minimum of 90% of wastewater reclaimed	10

893

894 6.3.2.2 SANITARY FITTINGS & WARE

895 Sanitary Fittings such as faucets (taps) and showerheads for their performance based on 896 water efficiency shall comply with the specifications as per Table 32.

897

	Table 32: Points for Star Rated Sanitary Fiftings	
n		Incremental Po

Provision	Incremental Points
2- star rating as per IS 17650 Part 1, 2021,	5
3- star rating as per IS 17650 Part 1, 2021,	8

898

899

900 Sanitary ware such as water closets, squatting pans, flush valves, flushing cisterns, and urinals 901 for their performance based on water efficiency shall comply with the specifications as per

902 Table 33. 903

Table 33: Points for Star Rated Sanitary Ware

Pro	ovision	Incremental Points
2- star rating as per IS 17650 Part 1, 2021,		5
3-	star rating as per IS 17650 Part 1, 2021,	8

905 CHAPTER 7: WASTE MANAGEMENT

906 **7.1 SCOPE**

934

935

936

937

938

939

940

- 7.1.1 The chapter provides requirements to minimise the waste generated both during
 the construction phase and post-occupancy to divert any waste from reaching the
 landfills. The chapter consists of two parts Construction Waste Management and
 Municipal Waste Management.
- 7.1.2 Classification of construction waste²¹: The waste generated during construction
 shall be classified but not limited to the following categories:
- i. Non-Hazardous waste: Including but not limited to Excavated earth excluding 150-200 mm (6-8 inches) of the topsoil, Land clearing debris, Metals (Reinforcement bars, Metal beams/girders, Window/Door frames, nuts and bolts, wires, etc.),
 Cement and Concrete, Masonry materials (Bricks, AAC blocks, stone, any other masonry, etc.), Flooring, Ceiling, Roofing materials, Insulation materials, Cladding materials (Tiles, stones, gypsum, etc.), Glass, Wood, etc.
- 919ii.Packaging waste: Including but not limited to cement bags, Wooden crates and920pallets, Cardboard boxes, Plastic wrapping and shrink wrap, Foam and bubble921wrap, Strapping bands and steel wires, PE film or plastic sheeting, Plastic or metal922drums/buckets/containers, Corrugated plastic sheets, specialized packaging etc.
- 923 iii. Construction Hazardous waste: Including but not limited to lead, tars, adhesives,
 924 sealants, broken glass.
- 9257.1.3Classification of post-occupancy waste: The waste generated post-construction926shall be classified but not limited to the following categories:
- 927 i. Dry waste: Including but not limited to, *plastic* items (plastic bottles, containers, packaging, stationary items, etc.), *paper* items (newspapers, magazines, cardboard, packaging, etc.), *metal* items (aluminium cans, used aluminium foil paper/tray, *steel* containers, old metal utensils, pots, metal gardening accessories, etc.), *glass* items (glass bottles, jars, utensils, etc.), *Electronics* items (wires, computer accessories, fluorescents, lamps, other electronics, and electrical devices/appliances).
 - ii. Wet waste: Including but not limited to, vegetable peels, used tea, fruits, food leftovers, horticulture waste, etc. These are biodegradable organic waste that can also be composted.
 - iii. Sanitary waste: Including but not limited to, used diapers, sanitary pads, sweat pads, tampons, condoms, wipes, masks/ gloves, toilet paper, bandages, swabs, and other personal hygiene products etc.
 - **iv. Hazardous waste:** Including but not limited to, expired medicines, used syringes/needles, chemical containers, broken glass, batteries, etc.

²¹ **Construction Waste:** Construction waste is any substance, matter, or thing that is produced as a result of construction work. Wastes also include surplus and damaged products and materials arising in the course of construction work or used temporarily during on-site activities. (C & D Waste Management Rules, 2016)

942 7.2 MANDATORY PROVISIONS

943 7.2.1 CONSTRUCTION WASTE MANAGEMENT

944 7.2.1.1 SEGREGATION AND STORAGE OF WASTE

P45 Designated areas shall be provided within the site/neighbouring site for collection,
segregation, and storage of segregated waste as per the classification of waste mentioned in
clause no. 7.1.2 of this code.

948 Note: No construction and demolition waste shall be littered or deposited to prevent obstruction to the traffic or the public or drains. (C&D Waste Management Rules, 2016)

950 7.2.1.2 MINIMIZATION OF NON HAZARDOUS WASTE

At least 50% (by either weight or volume) of non-hazardous waste generated, shall have to be
reused/repurposed/recycled/salvaged ²². For sample calculation refer to clause number 9.15
of this code.

954 Note: Some types of construction waste can be reused/repurposed on-site as fill material for levelling uneven terrain,
 955 filling excavated areas, or creating embankments, as a base or subbase material for road construction, for erosion
 956 control measures, constructing retaining walls, as bedding and backfill material for utility pipelines, etc.

957 7.2.1.3 RECYCLING OF PACKAGING WASTE

100% of the packaging recyclable waste, shall be handed over to manufacturers/ authorized
 recyclers or municipal entities for appropriate management and disposal.

960 7.2.1.4 DIVERT CONSTRUCTION WASTE FROM LANDFILL

P61 Ensure that all (100%) the construction waste (by either weight or volume) generated during
P62 the construction process is either reused/repurposed/salvaged on-site, diverted to recycling
P63 facilities, or safely handed over to municipalities. Diversion efforts shall be tracked throughout
P64 the construction process. For sample calculation refer to clause number 9.15 of this code.

965 7.2.2 POST-CONSTRUCTION WASTE MANAGEMENT

967

968

966 7.2.2.1 WASTE COLLECTION, SEGREGATION AND STORAGE

Designated waste collection area on each floor of the building shall be provided with four colour-coded waste bins—Dry Waste, Organic Waste, Sanitary Waste, and Hazardous Waste.

²² **Reusing** is a strategy to return materials for active use in the same or a related capacity. **Repurposing** refers to items or substances that were originally intended for one purpose but have been creatively transformed, i.e. broken brick/blocks can be repurposed as road filling. **Recycling** is a strategy to put used objects and materials through a process so that they can be used again.

Salvaged materials are construction materials recovered from existing buildings or construction sites / second-hand markets and reused in other buildings.

969 For calculation of waste generation quantity and area required for storage, refer to clause 970 number 9.12, 9.13 of this code.

971	Note:		
972		Α.	A daily waste collection schedule should be developed to collect the segregated waste
973			from each floor and store at a designated centralized storage area in the premises until its
974			transportation to respective recyclers.
975		Β.	Dry, sanitary, and hazardous waste shall be transported to/ collected by authorised

recyclers/ Municipal Corporation. 976

977 7.2.2.2 ORGANIC WASTE TREATMENT

- 978 A. Projects having built up area ≥5000 sq.m, an onsite designated area shall be 979 provided to compost (manually or mechanically) at least 50% of projected organic 980 waste (kitchen & horticulture) generated on post-occupancy. The waste 981 generation shall be calculated using the formula as given in clause number 9.10 of 982 this code. The area shall be provided as per
- 983 B. Table 34.
- 984 C. Projects having built up area <5000 sq.m, the project authority may hand over the 985 segregated organic waste to the concerned local body if the municipality has a 986 garbage pick-up mechanism in place. If such an arrangement is inadequate or 987 unavailable, the project authority shall engage a professional waste management 988 organisation to pick up the segregated organic waste, where there is no alternate 989 arrangement for disposal of biodegradable waste, Organic waste 990 composter/Vermiculture pit with a minimum capacity of 1.0 kg/150 sqm. of built-991 up area/day shall be installed & operated.
- 992 993

Table 34: Area requirement for different strategies

S. No.	Type of waste treatment	reatment Area required (m ² per 10Kg)	
1	Composting	Approx. 10 m ² (including circulation area)	
2	Vermi Composting	Approx. 15 m ² (including circulation area)	
3	Mechanical	8-12 m ² (including circulation area)	

994

1000

995 7.3 INCREMENTAL PROVISIONS (MAXIMUM 7 POINTS)

996 7.3.1 CONSTRUCTION WASTE MANAGEMENT (MAXIMUM 2 POINTS)

997 MINIMIZATION OF NON-HAZARDOUS WASTE 7.3.1.1

998 Non-hazardous construction waste generated shall have to be reused/repurposed 999 /recycled/salvaged, to comply with the requirements as per Table 35.

Table 35: Points for reuse of waste generated on-site	
Provision	Incremental Points
75% of non-hazardous waste generated is reused/repurposed	1
/recycled/salvaged	
95% of non-hazardous waste generated is reused/repurposed	2
/recycled/salvaged	

1001 7.3.2 POST-CONSTRUCTION WASTE MANAGEMENT (MAXIMUM 5 POINTS)

1002 7.3.2.1 WASTE COLLECTION, SEGREGATION AND STORAGE (MAXIMUM POINTS: 2)

1003 Different categories (organic, sanitary, Hazardous, plastic, paper, glass, metal, packaging) of 1004 colour-coded waste collection bins are provided for waste segregation in the centralized 1005 waste collection area, as per Table 36.

1006

1007 Note: Colour coding of wastebins can be implemented based on market availability, along with the1008 installation of permanent signages.

1009 1010

Table 36: Points for waste segregation at the centralized unit

Provision	Incremental Points
100% of recyclable waste shall be segregated into six categories	
organic, sanitary, Hazardous, plastic, glass, and metal.	
100% of recyclable waste shall be segregated into eight categories	X
organic, sanitary, Hazardous, plastic, paper, glass, metal, and	2
packaging.	

1011

1012 7.3.2.2 ORGANIC WASTE TREATMENT (MAXIMUM POINTS: 3)

1013 A designated area on the project site shall be provided to compost (manually or

1014 mechanically) to comply with the requirements as per Table 37. The calculation shall be done

1015 to calculate the designated area as per 9.12, 9.13, 9.14.

- CSD

Table 37: Points for Composting of Organic Waste		
Provision	Incremental Points	
75% of organic waste generated post-occupancy is composted on-	2	
site		
95% of organic waste generated post-occupancy is composted on-	3	
site		

8.2	SCOPE
8.2.1	The chapter provides provisions related to indoor air quality, thermal comfort, and visual comfort post-occupancy of a building. It consists of eight parts: ventilation potential, low-emitting materials, air quality in car parking, openings for kitchen and bathrooms/toilet ventilation, daylight availability, lighting adequacy for common areas and exterior lighting, lighting quality, and thermal comfort.

CHAPTER 8: INDOOR ENVIRONMENTAL QUALITY (IEQ)

1026

1019 1020 1021

1022

1023

1024 1025

1027 8.3 MANDATORY PROVISIONS

1028 8.3.1 VENTILATION POTENTIAL

1029 8.3.1.1 The building shall meet the minimum criteria for the openable window-to-floor area 1030 ratio (WFR_{op}) to ensure an adequate potential for natural ventilation as per Table 8 1031 under provision number 0 of this code.

1032 8.3.2 LOW-EMITTING MATERIALS

- 1033 8.3.2.1 Paints used on the interior side of the building envelope shall comply with the VOC 1034 content limits as per Table 38
- 1035

Table 38: VOC Limits of Selected Paints		
Type of Material VOC Limit (g/L less water)		
Paints:	c \	
Flat paints	50	
Non-flat paints	50	

1036 8.3.3 **AIR QUALITY IN CAR PARKING**

1037 For enclosed parking areas, a well-designed ventilation and exhaust system shall 8.3.3.1 1038 be installed that provides a minimum of 6 air changes per hour, as per the National 1039 Building Code (NBC), to effectively eliminate vehicle exhaust fumes and pollutants.

1040	Air Change per Hour = Q / V

1041 where, 1042 $Q = airflow rate (m_3/h)$ 1043 V = volume of the space (m³) 1044

1045 8.3.4 **VENTILATION OPENING IN KITCHEN AND BATHROOMS/TOILETS**

1046 8.3.4.1 An opening and/or ventilator shall be provided, in addition to the window, above 1047 the lintel level for the installation of exhaust systems in the kitchen and 1048 bathrooms/toilets.

1050 8.3.5 DAYLIGHT AVAILABILITY

10518.3.5.1The building shall meet the minimum criteria for Visible Light Transmittance (VLT) to1052ensure adequate availability of daylight as per Table 9 under provision number10535.2.1.2 of this code.

1054 8.3.6 LIGHTING ADEQUACY FOR COMMON AREAS AND EXTERIOR LIGHTING

- 10558.3.6.1Artificial lighting systems complying with the minimum recommended lux levels1056specified in Table 39 shall be installed.
- 1057

Table 39: Required Min. Lux Levels as per space

Area Name		Minimum lux level
Corridor Lighting & Stilt Parking		100
Basement lighting		70
Exterior Lighting Areas		
Driveways and parking (open/ external)		5-20
Pedestrian walkways		50
Stairways		100
Indoor Lighting (If applicable)	. ()
Kitchen		200
Bathroom		100
Reading/ Study		300

1058 (Source: SP 41 - Handbook on Functional Requirements of Buildings-Part 4 & NBC 2016: Volume

1059 2, part 8, section 1, clause 4.1.4)

1060 The lux levels shall be calculated using the formula as given in clause number 9.10 of this code.

1061 8.3.7 LIGHTING QUALITY - COLOUR RENDERING INDEX

1064

Table 40: Required CRI as per space type

Area Name	Ra (General Colour Rendering Index)
Corridor Lighting & Stilt Parking	80
Basement lighting	70
Exterior Lighting Areas	
Driveways and parking (open/ external)	70
Pedestrian walkways	70
Stairways	80
Indoor Lighting (If applicable)	
Kitchen	90
Bathroom	80
Bedroom	80
Reading/ Study	90
Living Room	90

1065 1066

^{10628.3.7.1}The Colour Rendering Index (CRI) values for each zone within the building shall1063comply with requirements as per Table 40

1068 8.3.8 THERMAL COMFORT

- 10698.3.8.1Buildings in all Climate Zones except Cold Climate shall comply with the following1070provisions of the code:
- 1071A. Maximum Residential Envelope Transmittance Value (RETV) (except the1072roof) as per provision number 0
 - B. Minimum openable window-to-floor area ratio (WFR_{op}) as per provision number 0
 - C. Maximum Thermal Transmittance of roof (Uroof) as per provision number 0
- 1076 8.3.8.2 Buildings in Cold Climates, shall comply with the following provisions of the code:
- 1077A. Thermal Transmittance value of the building envelope (UEnvelope.Cold) (except1078the roof) as per provision number 0
- 1079 B. Maximum Thermal Transmittance of roof (U_{roof}) as per provision number 0

1080 8.4 INCREMENTAL POINTS PROVISIONS (MAXIMUM 10 POINTS)

1081 8.4.1 CROSS-VENTILATION (MAXIMUM 4 POINTS)

- 10828.4.1.1Cross-ventilation is ensured in regularly occupied spaces (kitchen, bedrooms, living,1083dining areas) with openable doors, windows, or ventilators as per Annexure 6.1084Incremental points are calculated as per the formula below and points as per Table108541.
- 1086Percentage of cross ventilation area = (cross ventilation Area / total regularly1087occupied Area) * 100

Table 41: Cross ventilation requirement for incremental points

Provision	Incremental Points
50% of regularly occupied spaces have cross- ventilation	2
75% of regularly occupied spaces have cross- ventilation	3
90% of regularly occupied spaces have cross- ventilation	4

1089

1088

1073

1074

1075

1090 8.4.2 DAYLIGHT AVAILABILITY (USEFUL DAYLIGHT ILLUMINANCE) (MAXIMUM 4 1091 POINTS)

- 10928.4.2.1The building shall comply with the useful daylight illuminance requirement as1093prescribed by the ECBC 2017, clause no 4.2.3. Ensure above-grade floor areas shall1094meet or exceed the useful daylight illuminance (UDI) area requirements listed in1095Table 56 for 90% of the potential daylit time in a year. (Refer to Error! Not a valid1096bookmark self-reference.). Incremental points can be achieved as per Table 42.
- 1097

Provision	Incremental Points
40% of the regularly occupied spaces meeting the UDI requirement	2
50% of the regularly occupied spaces meeting the UDI requirement	3
60% of the regularly occupied spaces meeting the UDI requirement	4

1098 8.4.3 AIR QUALITY IN UNDERGROUND PARKING AREA (MAXIMUM POINTS 2)

10998.4.3.1Install a demand control ventilation system to limit CO levels in the underground1100parking area to ensure safety and air quality. The location of sensors should be1101followed as prescribed by the NBC 2016, Volume 2, Part 8, section 3, clause no110211.5.4. Incremental points can be achieved as per Table 43.

1103

Table 43: Air Quality in Car Parking

Provision	Incremental Points
CO sensors are installed to control the ventilation system	2
to limit CO level	

CHAPTER 9: CALCULATIONS AND FORMULA 1105

1106 9.1 CALCULATION OF OPENABLE WINDOW-TO FLOOR AREA RATIO (WFROP)

1107 9.1.1 The openable window-to-floor area ratio (WFRop) indicates the potential of using 1108 external air for ventilation. The prescribed minimum WFRop helps in ventilation, 1109 improvement in thermal comfort, and reduction in cooling energy.

- 1110 9.1.2 The openable window-to-floor area ratio (WFRop) is the ratio of openable area to the 1111 carpet area of dwelling units.
- 1112

$$WFR_{op} = \frac{A_{openable}}{A_{carpet}}$$

1113 Where:

WFRop : openable window-to-floor area ratio

Aopenable: openable area (m2); it includes the openable area of all windows and 1115 ventilators, opening directly to the external air, an open balcony, 'verandah', corridor, 1116 1117 or shaft; and the openable area of the doors opening directly into an open balcony.

- Exclusions: All doors opening into corridors. External doors on ground floor, for example, 1119 1120 ground floor entrance doors or backyard doors.
- 1121

Acarpet: Carpet Area of dwelling units (m²); it is the net usable floor area of a dwelling 1122 1123 unit, excluding the area covered by the external walls, areas under services shafts, 1124 exclusive balcony or verandah areas and exclusive open terrace areas, but includes the area covered by the internal partition walls of the dwelling unit. 1125

- The openable area $(A_{openable_{pu}})$ of each dwelling unit (DU) is calculated by adding the 9.1.3 1126 1127 openable area of all windows and ventilators, opening directly to the external air, an 1128 open balcony, 'veranda', corridor or shaft; and the openable area of the doors 1129 opening directly into an open balcony (doors opening into the corridors and ground-1130 floor external doors are not included).
- 1131

1114

1118

- openablewindow + A openableventilator + A openabledood
- 1132 In case the exact openable area is not known, the default values as per Table 44 1133 can be used:
- 1134

Table 44: Default openable area to opening area ratio

Type of window/door/ventilator	Percentage openable area
Casement	90%
Sliding (2 panes)	50%
Sliding (3 panes)	67%

1135

9.1.4 Add openable areas of all dwelling units to get the total openable area.

1136

 $A_{openable} = A_{openableout} + A_{openableout} + A_{openableout} + \dots$

(1)

1137 9.1.5 The total carpet area can be calculated by adding the carpet areas of all the dwelling
1138 units (DU). It excludes the areas covered by external walls, areas under service shafts,
1139 exclusive balcony or veranda areas and exclusive open terrace areas, but includes
1140 the areas covered by the internal partition walls of the dwelling unit.

$$A_{carpet} = A_{carpetDU1} + A_{carpetDU2} + A_{carpetDU3} + \dots$$

1142 9.2 CALCULATION OF WINDOW-TO-WALL RATIO (WWR)

9.2.1 WWR is the ratio of the area of non-opaque building envelope components of dwelling
units to the envelope area (excluding roof) of dwelling units.

1145
$$WWR = \frac{A_{non-opaque}}{A_{envelope}}$$

1146 9.2.2 Calculate the total non-opaque (transparent/translucent panels of windows, doors, ventilators, etc.) area of the building envelope for each dwelling unit.

1148	A _{non-opaque(DU)} = A _{non-opaque(Window)} + A _{non-opaque(Door)} + A _{non-opaque(Other)}
1149	Add non-opaque areas of all dwelling units to get the total non-opaque area of the
1150	building block. Non-opaque components facing open corridors and enclosed shafts,
1151	as well as walls of common services such as lifts and staircases are to be excluded.

$$A_{non-opaque} = A_{non-opaque(DU1)} + A_{non-opaque(DU2)} + A_{non-opaque(DU3)} + \dots$$

1153 9.2.3 Calculate the total envelope area (excluding roof) of dwelling units of the building 1154 block. For each wall of the building envelope, calculate the gross wall area (i.e., overall 1155 area of a wall including openings such as windows, ventilators, and doors, with measurement taken horizontally from outside surface to outside surface and measured 1156 vertically from the top of the floor to the top of the roof). Add the gross wall area of all 1157 1158 walls to get the total envelope area (excluding roof) for the building. Walls facing open 1159 corridors and enclosed shafts, as well as walls of common services such as lifts and 1160 staircases are to be excluded.

1152

$$A_{envelope} = A_{gross-wall} + A_{gross-wall} + A_{gross-wall} + ...$$

1162

1165 1166

9.3 CALCULATION OF THERMAL TRANSMITTANCE (U VALUE) OF ROOF AND WALL

1163 Calculate the thermal resistance of each uniform material layer, which constitutes the building 1164 component, as follows:

$$R_i = \frac{t_i}{k_i} \tag{2}$$

1167 where,

1168 R_i is the thermal resistance of material layer i, m².K/W

1169 t_i is the thickness of material layer i, m

- 1170 k_i is the thermal conductivity of material layer i, W/(m.K)
- 1171 Find the total thermal resistance, RT, as follows:
 - $R_T = R_{si} + R_{se} + R_1 + R_2 + R_3 + \cdots$
- 1174 Where,
- 1175 *R*₇ is the total thermal resistance, m².K/W
- 1176 *Rsi* is the interior surface film thermal resistance, m².K/W
- 1177 Rse is the exterior surface film thermal resistance, m².K/W
- 1178 R₁ is the thermal resistance of material layer 1, m².K/W
- 1179 R_2 is the thermal resistance of material layer 2, m²₂.K/W
- 1180 R₃ is the thermal resistance of material layer 3, m².K/W
- 1181 Using these default values for calculation, the thermal conductivity of commonly used
- building materials is given in Table 45, which can be used to calculate the thermal resistance (r-value).
- 1184

1185

Table 45: Values of surface film thermal resistance for U-value calculation

	Wall	Roof		
	All climatic Zones	composite climate, hot-dry climate, warm- humid climate, and temperate climate	cold climate	
R _{si} (m².K/W)	0.13	0.17	0.10	
Rse (m ² .K/W)	0.04	0.04	0.04	

1186

1187 Source: adapted from Bureau of Energy Efficiency (BEE), 2009. Energy Conservation Building1188 Code user guide, New Delhi.

1189

1190 Calculate the thermal transmittance (or the overall heat transfer coefficient or U value) of a 1191 wall or roof assembly, as follows:

 $U = \frac{1}{R_{T}}$

1192

1193 where,

1194 *U* is the overall heat transfer coefficient, W/(m².K)

1195 Table 46 gives typical thermal properties of commonly used building and insulating materials.

1196 This is not an all-inclusive list. In case, thermal conductivity values, measured using the

1197 1198 appropriate IS codes, are available; than those can also be used for calculations. Table 46: Type of material and Thermal Conductivity

S. No.	type of material	Density (kg/m³)	thermal conductivity (w/m.K)	specific heat capacity (kJ/kg.K)	source
I. Building	materials				
1	Solid burnt clay brick	1920	0.980	0.80	(1)
2	Solid burnt clay brick	1760	0.850	NA	(1)
3	Solid burnt clay brick	1600	0.740	NA	(1)
4	Solid burnt clay brick	1440	0.620	NA	(1)
5	Resource efficient (hollow) brick	1520	0.631	0.65	(4)
6	Fly ash brick	1650	0.856	0.93	(2)
7	Solid concrete block 25/50	2427	1.396	0.20	(4)

(14)

(15)

	8	Solid concrete block 30/60	2349	1.411	0.30	(4)	
	9	Aerated autoclaved	642	0.184	1.24	(4)	
		concrete (AAC) block				. /	
	10	Cement stabilized soil block (CSEB)	1700	1.026	1.03	(5)	
	11	Cement stabilized soil block (CSEB)	1800	1.201	1.07	(5)	
	12	Cement stabilized soil block (CSEB)	1900	1.303	1.07	(5)	
	13	Dense concrete	2410	1.740	0.88	(3)	
	14	Reinforced concrete cement (RCC)	2288	1.580	0.88	(3)	
	15	Brick tile	1892	0.798	0.88	(3)	
	16	Lime concrete	1646	0.730	0.88	(3)	
	17	Mud Phuska	1622	0.519	0.88	(3)	
	18	Cement mortar	1648	0.719	0.92	(3)	
	19	Cement plaster	1762	0.721	0.84	(3)	
	20	Gypsum plaster	1120	0.512	0.96	(3)	
	21	Cellular concrete	704	0.188	1.05	(3)	
	22	AC sheet	1520	0.245	0.84	(3)	
	23	GI sheet	7520	61.060	0.50	(3)	
	24	Timber	480	0.072	1.68	(3)	
	25	Timber	720	0.144	1.68	(3)	
	26	Plywood	640	0.174	1.76	(3)	
	27	Glass	2350	0.814	0.88	(3)	
	28	Tar felt (2.3 kg/m2)	9	0.479	0.88	(3)	
	II. Insul	lating materials		I	I		
	1	Expanded polystyrene	16.0	0.038	1.34	(3)	
	2	Expanded polystyrene	24.0	0.035	1.34	(3)	
	3	Expanded polystyrene	34.0	0.035	1.34	(3)	
	4	Foam glass	127.0	0.056	0.75	(3)	
	5	Foam glass	160.0	0.055	0.75	(3)	
	6	Foam concrete	320.0	0.070	0.92	(3)	
	7	Foam concrete	400.0	0.084	0.92	(3)	
	8	Foam concrete	704.0	0.149	0.92	(3)	
	9	Cork slab	164.0	0.043	0.96	(3)	
(10	Cork slab	192.0	0.044	0.96	(3)	
	11	Cork slab	304.0	0.055	0.96	(3)	
No.	12	Rock wool (unbonded)	92.0	0.047	0.84	(3)	
XY'	13	Rock wool (unbonded)	150.0	0.043	0.84	(3)	
$\langle \rangle$	14	Mineral wool (unbonded)	73.5	0.030	0.92	(3)	
	15	Glass wool (unbonded)	69.0	0.043	0.92	(3)	
	16	Glass wool (unbonded)	189.0	0.040	0.92	(3)	
	17	Resin bonded mineral wool	48.0	0.042	1.00	(3)	
	18	Resin bonded mineral wool	64.0	0.038	1.00	(3)	

19	Resin bonded mineral wool	99.0	0.036	1.00	(3)
20	Resin bonded mineral wool	16.0	0.040	1.00	(3)
21	Resin bonded mineral wool	24.0	0.036	1.00	(3)
22	Exfoliated vermiculite (loose)	264.0	0.069	0.88	(3)
23	Asbestos mill board	1397.0	0.249	0.84	(3)
24	Hard board	979.0	0.279	1.42	(3)
25	Straw board	310.0	0.057	1.30	(3)
26	Soft board	320.0	0.066	1.30	(3)
27	Soft board	249.0	0.047	1.30	(3)
28	Wall board	262.0	0.047	1.26	(3)
29	Chip board	432.0	0.067	1.26	(3)
30	Chip board (perforated)	352.0	0.066	1.26	(3)
31	Particle board	750.0	0.098	1.30	(3)
32	Coconut pith insulation board	520.0	0.060	1.09	(3)
33	Jute fibre	329.0	0.067	1.09	(3)
34	Wood wool board (bonded with cement)	398.0	0.081	1.13	(3)
35	Wood wool board (bonded with cement)	674.0	0.108	1.13	(3)
36	Coir board	97.0	0.038	1.00	(3)
37	Saw dust	188.0	0.051	1.00	(3)
38	Rice husk	120.0	0.051	1.00	(3)
39	Jute felt	291.0	0.042	0.88	(3)
40	Closed cell flexible elastomeric	40–55	0.043	1.20	(3)
	foam - NBR)			

1199 Na: Not available

1200

1201 Sources

1202 (1) American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). 2009. 2009 ASHRAE
 1203 Handbook (Fundamentals). Atlanta, United States: ASHRAE

1204 (2) Gourav K, et al. 2017. Studies into structural and thermal properties of building envelope mate-rials. Energy
 1205 Procedia 122: 104–108

1206 (3) Bureau of Indian Standards (BIS). 1987. Handbook on Functional Requirements of Buildings (Other than 1207 Industrial Buildings) SP: 41 (S & T) -1987. New Delhi: BIS.

1208 (4) Thermo-Physical-Optical Property Database of Construction Materials, U.S.- India Joint Centre for Building 1209 Energy Research and Development (CBERD) and Ministry of New and Renew- able Energy (MNRE). Available at 1210 http://www.carbse.org/wp-content/uploads/2017/10/Data-base-of-Construction-Materials_Oct17.pdf (accessed on 1211 1 May 2018).

Balaji N C, et al. 2015. Influence of varying mix proportions on thermal performance of soil-cement blocks.
 Building Simulation Applications (BSA). 2nd IBPSA Italy Conference, Building Simulation Application - 2015 (BSA 2015).

1214 Available at http://www.ibpsa.org/proceedings/ BSA2015/9788860460745_10.pdf (accessed on 1 May 2018).

1215 In case, the construction has air layer, use values of thermal resistance of air layer given in Table 47 for U value 1216 calculation.

- 1217
- 1218
- 1219
- 1220
- 1221
- 1222
- 1223

Table 47: Values of unventilated air layer thermal resistance for U-value calculation

thickness	thermal resistance (m ² .K/w)						
of air Layer (mm)	wall in all climatic Zones	Roof in composite climate, hot-Dry climate, warm-humid climate, and temperate climate	Roof in cold climate				
5	0.12	0.10	0.10				
7	0.12	0.12	0.12				
10	0.14	0.14	0.14				
15	0.16	0.16	0.16				
25	0.18	0.18	0.17				
50	0.18	0.20	0.17				
100	0.18	0.20	0.17				
300	0.18	0.21	0.17				

1225

1226 1227

Source: Adapted from Bureau of Energy Efficiency (BEE), 2009. Energy Conservation Building Code User Guide, New Delhi

1228 9.4 THERMAL TRANSMITTANCE OF ROOF (UROOF)

1229	9.4.1	Thermal transmittance (U _{root}	characterizes the thermal performance of the roof of	a building.
------	-------	--	--	-------------

- 1230 Limiting the U_{roof} helps in reducing heat gains or losses from the roof, thereby improving the 1231 thermal comfort and reducing the energy required for cooling or heating.
- 1232 9.4.2 The calculation23 for thermal transmittance of roof shall be carried out, using Equation as 1233 shown below

1234

$$U_{roof} = \frac{1}{A_{roof}} \left[\sum_{i=1}^{n} (U_i \ x \ A_i) \right]$$

1235	Where,
1236	U _{roof} : thermal transmittance of roof (W/m ² .K)
1237	A _{roof} : total area of the roof (m ²)
1238	<i>U_i</i> : thermal transmittance values of different values of different roof
1239	construction (W/m ² .K)
1240	A_i : areas of different roof constructions (m ²)
1241	
1242	9.5 RESIDENTIAL ENVELOPE TRANSMITTANCE VALUE (RETV) FOR BUILDING

RESIDENTIAL ENVELOPE TRANSMITTANCE VALUE (RETV) FOR BUILDING ENVELOPE (EXCEPT ROOF) FOR FOUR CLIMATE ZONES, NAMELY, COMPOSITE CLIMATE, HOT-DRY CLIMATE, WARM-HUMID CLIMATE, AND TEMPERATE CLIMATE

1246 9.5.1 Residential envelope heat transmittance (RETV) is the net heat gain rate (over the cooling 1247 period) through the building envelope (excluding roof) of the dwelling units divided by the 1248 area of the building envelope (excluding roof) of the dwelling units. Its unit is W/m².

²³ To comply with the Code, U value shall be rounded off to one decimal places in accordance with IS 2: 1960 'Rules for rounding off numerical values'.

BEE plans to improve the RETV norm to 12 W/m2 in the near future and the building industry and regulating agencies are encouraged to aim for it.

- 1249RETV characterizes the thermal performance of the building envelope (except1250roof). Limiting the RETV value helps in reducing heat gains from the building1251envelope, thereby improving the thermal comfort and reducing the electricity1252required for cooling.
- 1253 RETV formula takes into account the following:
 - a) Heat conduction through opaque building envelope components (wall, opaque panels in doors, windows, ventilators, etc.),
 - b) Heat conduction through non-opaque building envelope components (transparent/translucent panels of windows, doors, ventilators, etc.),
 - c) Solar radiation through non-opaque building envelope components (transparent/translucent panels of windows, doors, ventilators, etc.)
- 12609.5.2The RETV for the building envelope (except roof) for four climate zones, namely, Composite1261Climate, hot-Dry Climate, Warm-humid Climate, and temperate Climate, shall comply with the1262maximum RETV of 15 W/m².
- 12639.5.3The RETV calculation of the building envelope (except roof) shall be carried out, using Equation12644 as shown below. 24

$$1265 \qquad RETV = \frac{1}{A_{envelope}} \times \left[\left\{ a \times \sum_{i=1}^{n} (A_{opaque_i} \times U_{opaque_i} \times \omega_i) \right\} + \left\{ b \times \sum_{i=1}^{n} (A_{non-opaque_i} \times U_{non-opaque_i} \times \omega_i) \right\} + \left\{ c \times \sum_{i=1}^{n} (A_{non-opaque_i} \times SHGC_{eq_i} \times \omega_i) \right\} \right]$$
(3)

1268 where,

SHGC_{eqi}:

1254

1255

1256

1257 1258

1259

1267

1269

1270

1271

1275

1276

1277

1278

1279

- A_{envelope}: envelope area (excluding roof) of dwelling units (m²). It is the gross external wall area (includes the area of the walls and the openings such as windows and doors).
- 1272 A_{opaquei}: areas of different opaque building envelope components (m²)
- 1273 U_{opaque_i} :thermal transmittance values of different opaque building envelope1274components (W/m².K)
 - Anon-opaque, areas of different non-opaque building envelope components (m²)
 - $v_{non-opaque_i}$: thermal transmittance values of different non-opaque building envelope components (W/m².K)

equivalent solar heat gain coefficient values of different non-opaque building envelope components (values are given in section 9.9)

1280 ω_i :orientation factor of respective opaque and non-opaque building envelope1281components; it is a measure of the amount of direct and diffused solar radiation that is1282received on the vertical surface in a specific orientation

12831284 The coefficients of RETV formula, for different climate zones are given in Table 481285

²⁴ To comply with the Code, RETV value shall be rounded off to nearest integar value in accordance with IS 2: 1960 'Rules for rounding off numerical values'.

Table 48: Coefficients (a, b, and c) for RETV formula

Climate zone	a	b	c	
Composite	6.06	1.85	68.99	
Hot-Dry	6.06	1.85	68.99	
Warm-Humid	5.15	1.31	65.21	
Temperate	3.38	0.37	63.69	
Cold	Not applicable (Refer clause 5.2.1.4)			

1287

9.5.4 If a proposed building development comprises two or more residential building blocks
having different RETV. The weighted average RETV of the total residential project shall be
computed (using method mentioned in Chapter 9).

1291

1292 9.6 CALCULATION OF THE WEIGHTED AVERAGE RETV OF THE TOTAL RESIDENTIAL 1293 PROJECT

12949.6.1The weighted average RETV of the total residential project shall be computed using following1295equation

$$RETV_{Weighted average} = \sum_{i=1}^{(RETV_{bldg.} \times EA_{bldg.})} / EA_{total}$$

1297 1298

1300

$$\frac{+(RETV_{bldg2} \times EA_{bldg}) + (RETV_{bldg3} \times EA_{bldg})}{(EA_{total})}$$

1301 Where,

 $(RETV_{bldg1.} \times EA_{bldg1})$

1302	
1303	$RETV_{Weightedaverage}$ is the combined RETV of the overall residential development project.
1304	RETV _{bldg.} : is the individual RETV of each residential block. EA _{bldg.} : is the total envelope area of the individual building or the total residential project.
1305	EA _{bldg} ; is the total envelope area of the individual building or the total residential project.
1306	EA _{total} : is the total envelope area of the individual building or the total residential project.
1307	A _{envelope} : envelope area (excluding roof) of dwelling units (m ²). It is the gross external wall
1308	area (includes the area of the walls and the openings such as windows and doors)

1309 9.7 THERMAL TRANSMITTANCE OF BUILDING ENVELOPE (EXCEPT ROOF) FOR COLD 1310 CLIMATE (UENVELOPE, COLD)

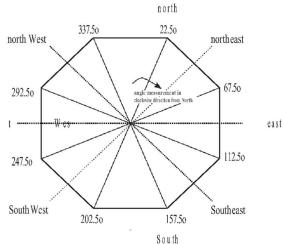
- 13119.7.1Thermal transmittance (Uenvelope,cold) characterizes the thermal performance of the building1312envelope (except roof). Limiting the Uenvelope,cold helps in reducing heat losses from the building1313envelope, thereby improving the thermal comfort and reducing the energy required for heating.
- U envelope, cold takes into account the following:
 Heat conduction through opaque building envelope components (wall, opaque panels in door, window, ventilators, etc.)

- Heat conduction through non-opaque building envelope components (transparent/translucent panels in windows, doors, ventilators, etc.).
- 13199.7.2The thermal transmittance of the building envelope (except roof) for cold climate shall comply1320with the maximum of 1.8 W/m².K.
- 13219.7.3The calculation of the building envelope (except roof) shall be carried out, using the following1322equation

$$U_{envelope,cold} = \frac{1}{A_{envelope}} \sum_{i=1}^{n} (U_i \times A_i)$$

1324 Where,

1021	WHICKC,	
1325	U _{envelope,co}	Id : Thermal transmittance of building envelope (except roof) for cold
1326		climate (W/m ² .K)
1327 1328 1329	Aenvelope	: envelope area (excluding roof) of dwelling units (m ²). It is the gross external wall area (includes the area of the walls and the openings such as windows and doors)
1330 1331	Ui	: thermal; transmittance of different opaque and non-opaque building envelope components (W/m ² .K)
1332 1333 1334	Ai	: area of different opaque and non-opaque building envelope components (m²)

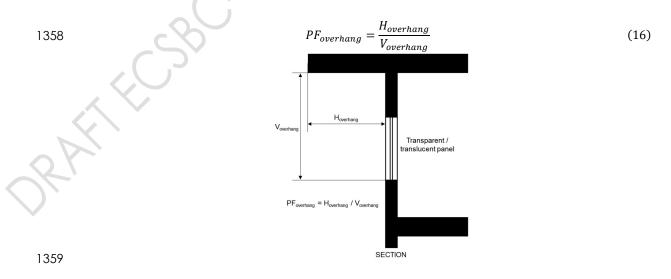

1335 9.8 CALCULATION OF ORIENTATION FACTOR

13369.8.1The orientation factor (ω) is a measure of the amount of direct and diffused solar radiation that1337is received on the vertical surface in a specific orientation. This factor accounts for and gives1338weightage to the fact that the solar radiation falling on different orientations of walls is not same.1339It has been defined for the latitudes ≥23.5°N and latitudes <23.5°N (Table 49). Table 49 should</td>1340be read in conjunction with Figure 1.

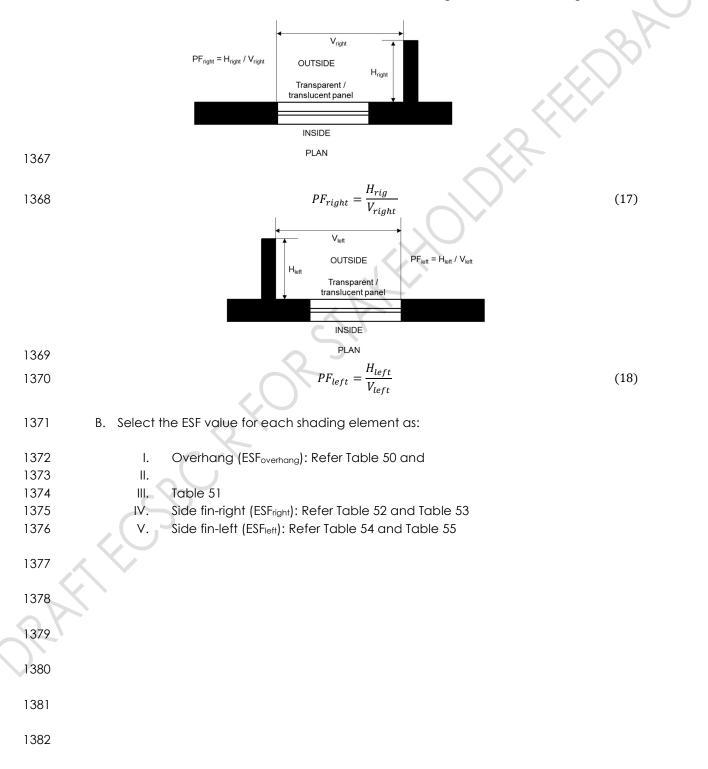
1	3	4	1

Table 49: Orientation factor (ω) for different orientations

Orientation factor (ω)				
Orientation	Latitudes ≥23.5°N	Latitudes <23.5°N		
North (337.6°–22.5°)	0.550	0.659		
North-east (22.6°–67.5°)	0.829	0.906		
East (67.6°–112.5°)	1.155	1.155		
South-east (112.6°–157.5°)	1.211	1.125		
South (157.6°–202.5°)	1.089	0.966		
South-west (202.6°-247.5°)	1.202	1.124		
West (247.6°–292.5°)	1.143	1.156		
North-west (292.6°–337.5°)	0.821	0.908		


Figure 1: Primary orientations for determining the orientation factor ω

1345 9.9 CALCULATION OF EQUIVALENT SHGC


1346	9.9.1	SHGC Equivalent is the SHGC for a non-opaque component with a permanent external
1347		shading projection (overhang and side fins). It is calculated by multiplying the External
1348		Shading Factor (ESF) with the SHGC of unshaded non-opaque component. ESF values
1349		are defined based on the projection factor (PF). the procedure for calculation is given
1350		below:

A. Calculate the projection factor (PF) for permanent external projection, including but not limited to overhangs, side fins, box frame, verandah, balcony, and fixed canopies, using the formula:

1354i.Projection factor, overhang: the ratio of the horizontal depth of the external shading1355projection (Hoverhang) to the sum of the height of a non-opaque component and the1356distance from the top of the same component to the bottom of the farthest point of1357the external shading projection (Voverhang), in consistent units.

Projection factor, side/vertical fin: the ratio of the horizontal depth of the external shading projection to the distance from a non-opaque component to the farthest point of the external shading projection, in consistent units. In case of single side/ vertical fin, it could be on the 'Right' or 'Left' or there could be side/vertical fins on both the sides. A 'Right' side/vertical fin would be located on the right side of the window while looking out from the building and similarly, a 'Left' side/ vertical fin would be located on the left side of the window while looking out from the building out from the building.

1384

Table 50: External Shading Factor for Overhang (ESFoverhang) for LAT ≥ 23.5°N External Shading Factor for Overhang (ESFoverhang) for LAT ≥ 23.5°N

Orientation North North-East South-South South-West Northeast east west west (337.6[°]-(22.6[°]-(67.6[°]-(112.6[°]-(157.6[°]-(202.6[°]-(247.6[°]-(292.6[°]-112.5°) 202.5°) 292.5°) 337.5°) 22.5°) 67.5°) 157.5°) 247.5°) **PFoverhang** < 0.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.10-0.19 0.955 0.930 0.922 0.906 0.881 0.905 0.922 0.930 0.876 0.823 0.853 0.875 0.20-0.29 0.922 0.855 0.824 0.789 0.30-0.39 0.897 0.834 0.796 0.755 0.719 0.753 0.794 0.834 0.40-0.49 0.877 0.803 0.745 0.697 0.665 0.695 0.743 0.802 0.779 0.700 0.778 0.50-0.59 0.860 0.702 0.652 0.626 0.650 0.60-0.69 0.761 0.760 0.846 0.666 0.617 0.598 0.614 0.663 0.70-0.79 0.834 0.747 0.635 0.590 0.587 0.632 0.746 0.580 0.80-0.89 0.825 0.737 0.609 0.569 0.569 0.566 0.606 0.736 0.90-0.99 0.728 0.817 0.729 0.587 0.554 0.563 0.551 0.585 ≥1 0.810 0.722 0.569 0.542 0.559 0.539 0.566 0.721

1385

1386

1387

Table 51: External Shading Factor for Overhang (ESFoverhang) for LAT<23.5°N

	External	shadin	g Factor fo	r overhan	g (EsF _{overhang}) for Lat <	23.5°N	
orientation	North (337.6°- 22.5°)	North- east (22.6°–	East (67.6°– 112.5°)	south- east (112.6°–	south (157.6°– 202.5°)	south- west (202.6°–	west (247.6°– 292.5°)	North- west (292.6°–
PF overhang		67.5°)		157.5°)		247.5°)		337.5°)
<0.10	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
0.10-0.19	0.931	0.924	0.922	0.910	0.896	0.910	0.922	0.924
0.20-0.29	0.888	0.864	0.855	0.834	0.816	0.834	0.854	0.864
0.30-0.39	0.860	0.818	0.797	0.771	0.754	0.771	0.796	0.818
0.40-0.49	0.838	0.782	0.747	0.721	0.708	0.720	0.746	0.782
0.50-0.59	0.820	0.755	0.705	0.682	0.675	0.681	0.705	0.755
0.60-0.69	0.806	0.734	0.670	0.651	0.653	0.651	0.670	0.734
0.70-0.79	0.793	0.718	0.641	0.628	0.638	0.627	0.640	0.717
0.80-0.89	0.783	0.706	0.616	0.610	0.628	0.609	0.615	0.705
0.90-0.99	0.775	0.696	0.596	0.596	0.621	0.596	0.595	0.695
≥1	0.768	0.688	0.579	0.585	0.616	0.585	0.578	0.688

1388

1389

1390

1391 1392

1393

1394

Table 52: External Shading Factor for Side Fin-Right (ESF_right) for LAT \geq 23.5 $^\circ\text{N}$

orientatio	External	shading	Factor fo	r side Fin-	Right (EsFri	ght) for Lat	≥ 23.5°N		1
n PF _{right}	North (337.6° –22.5°)	North -east (22.6°	East (67.6° – 112.5°	south- east (112.6° –	south (157.6° – 202.5°)	south- west (202.6° -	west (247.6° - 292.5°)	North- west (292.6° -	Ct.
<0.10	1.000	67.5°)	1.000	157.5°) 1.000	1.000	247.5°) 1.000	1.000	337.5°)	
0.10-0.19	0.968	0.942	0.972	0.982	0.961	0.965	0.988	0.985	
0.20-0.29	0.943	0.894	0.949	0.968	0.933	0.934	0.977	0.972	
0.30-0.39	0.924	0.855	0.931	0.957	0.912	0.907	0.968	0.961	
0.40-0.49	0.911	0.824	0.917	0.950	0.898	0.884	0.960	0.953	
0.50-0.59	0.899	0.798	0.905	0.944	0.887	0.865	0.954	0.945	
0.60-0.69	0.890	0.777	0.895	0.939	0.880	0.849	0.948	0.939	
0.70-0.79	0.883	0.762	0.887	0.936	0.875	0.837	0.943	0.934	
0.80-0.89	0.877	0.750	0.881	0.933	0.872	0.827	0.939	0.930	
0.90-0.99	0.871	0.739	0.875	0.930	0.868	0.819	0.935	0.926	
≥1	0.865	0.731	0.870	0.927	0.865	0.812	0.932	0.922	
,	•	•	•			•	•	•	•

Table 53: External Shading Factor for Side Fin-Right (ESFright) for LAT<23.5°N

orientatio	External s	External shading Factor for side Fin-Right (EsF _{right}) for Lat < 23.5°N									
n	North (337.6°	North -east	East (67.6°	south- east	south (157.6°	south- west	west (247.6°	North- west			
PF _{right}	–22.5°)	(22.6° –	– 112.5°	(112.6° -	– 202.5°)	(202.6° –	– 292.5°)	(292.6° –			
		67.5°))	157.5°)		247.5°)		337.5°)			
<0.10	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000			
0.10-0.19	0.962	0.948	0.975	0.982	0.962	0.959	0.984	0.984			
0.20-0.29	0.934	0.904	0.954	0.968	0.932	0.924	0.970	0.970			
0.30-0.39	0.913	0.868	0.937	0.957	0.911	0.894	0.958	0.959			
0.40-0.49	0.900	0.840	0.924	0.949	0.896	0.870	0.949	0.950			
0.50-0.59	0.888	0.816	0.912	0.942	0.885	0.849	0.940	0.942			
0.60-0.69	0.879	0.797	0.903	0.936	0.877	0.832	0.933	0.936			
0.70-0.79	0.872	0.782	0.896	0.932	0.872	0.820	0.927	0.931			
0.80-0.89	0.866	0.770	0.889	0.929	0.867	0.810	0.922	0.927			
0.90-0.99	0.860	0.760	0.884	0.925	0.863	0.801	0.917	0.923			
≥1	0.855	0.752	0.878	0.922	0.859	0.794	0.913	0.919			

1412

1413

1414

0.10-0.19

0.20-0.29

0.30-0.39

0.40-0.49

0.50-0.59

0.60-0.69

0.70-0.79

0.80-0.89

0.90-0.99

≥1

0.968

0.943

0.925

0.912

0.900

0.890

0.884

0.877

0.871

0.866

0.985

0.972

0.961

0.953

0.946

0.939

0.935

0.931

0.927

0.923

0.988

0.977

0.968

0.961

0.954

0.948

0.944

0.940

0.936

0.932

Table 54: External Shading Factor for Side Fin-Left (ESF_{leff}) for LAT \ge 23.5°N orientation External shading Factor for side Fin-Left (EsF_{left}) for Lat \geq 23.5°N North North-East southsouth southwest North-(337.6°east (67.6°east (157.6°west (247.6°west 22.5°) (22.6°-112.5°) (112.6°-202.5°) (202.6°-292.5°) (292.6°-PFleft 67.5°) 157.5°) 247.5°) 337.5°) < 0.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.965

0.933

0.906

0.883

0.863

0.846

0.834

0.824

0.815

0.808

0.961

0.932

0.911

0.897

0.886

0.879

0.874

0.871

0.867

0.864

0.982

0.967

0.957

0.949

0.943

0.938

0.935

0.932

0.929

0.927

0.972

0.949

0.931

0.916

0.904

0.895

0.887

0.881

0.875

0.870

0.942

0.895

0.857

0.826

0.801

0.781

0.766

0.754

0.744

0.736

1415 1416

Table 55: External Shading Factor for Side Fin-Left (ESF_{left}) for LAT<23.5°N

orientatio	External s	hading F	actor for s	side Fin-Le	ft (EsF _{left}) fo	or Lat < 23.	5°N	
n	North (337.6°	North -east	East (67.6°	south- east	south (157.6°	south- west	west (247.6°	North- west
PF _{leff}	–22.5°)	(22.6° - 67.5°)	– 112.5°)	(112.6° - 157.5°)	– 202.5°)	(202.6° - 247.5°)	– 292.5°)	(292.6° - 337.5°)
<0.10	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
0.10-0.19	0.962	0.984	0.984	0.959	0.962	0.982	0.975	0.948
0.20-0.29	0.933	0.970	0.970	0.924	0.932	0.968	0.954	0.904
0.30-0.39	0.912	0.959	0.958	0.895	0.911	0.956	0.937	0.868
0.40-0.49	0.899	0.950	0.949	0.870	0.896	0.948	0.924	0.840
0.50-0.59	0.887	0.942	0.941	0.849	0.885	0.942	0.913	0.816
0.60-0.69	0.878	0.935	0.933	0.833	0.877	0.936	0.903	0.797
0.70-0.79	0.871	0.931	0.928	0.820	0.871	0.932	0.896	0.783
0.80-0.89	0.865	0.926	0.923	0.810	0.867	0.928	0.890	0.771
0.90-0.99	0.859	0.922	0.918	0.801	0.863	0.925	0.884	0.761
≥1	0.854	0.919	0.913	0.794	0.859	0.922	0.879	0.752

1417

1418

1419

1420

A. Calculate the total external shading factor (ESF_{total}) using the formula:

$$ESF_{total} = ESF_{overhang} \times ESF_{sidefin}$$
(19)

Where,

 $ESF_{sidefin} = 1 - \left[\left(1 - ESF_{right} \right) + \left(1 - ESF_{left} \right) \right]$ (20)

1422	Β.	Calculate the equivalent SHGC of the fenestration (SHGC $_{eq}$) by multiplying
1423		the SHGC of the unshaded fenestration product (SHGC _{Unshaded}) with the total
1424		external shading factor (ESFtotal), using the formula:

 $SHGC_{eq} = SHGC_{Unshade} \times ESF_{total}$ (21)

1426 9.10 LUX LEVEL CALCULATION

1427 The following formula shall be used to calculate the lux levels:

1428

1429 **Formula**:

1430 Total luminous flux = number of light fixtures * lumens per fixture

1431 Average lux level = Total luminous flux / Total floor area

1432 9.11 DAY LIGHT AVAILABILITY CALCULATION

1433 This method can be used for demonstrating compliance with daylighting requirements without 1434 simulation. Daylight extent factors (DEF) mentioned in Table 56 shall be used for manually 1435 calculating percentage of above grade floor area meeting the UDI requirement for 90% of 1436 the potential daylit time in a year.

1437

Table 56: Daylight Extent Factors (DEF) for Manually Calculating Daylight Area

				· · ·						
Shading	Latitude	Window Type		VLT <	0.3			VLT ≥	0.3	
			North	South	East	West	North	South	East	West
No	≥15°N	All	2.5	2.0	0.7	0.5	2.8	2.2	1.1	0.7
shading		window								
or PF <	< 15°N	types	2.4	2.0	1.3	0.6	1.7	2.2	1.5	0.8
0.4										
Shading	All	All	2.8	2.3	1.5	1.1	3.0	2.5	1.8	1.5
with PF ≥	latitudes	window								
0.4		types								
		without								
		light								
	0	shelf								
		Window	3.0	2.5	1.8	1.6	3.5	3.0	2.1	1.8
		with								
		light								
		shelf								

1438

1440

1441

1442

1443

1444

1445

1446

1439

A. To calculate the daylit area:

I. In a direction perpendicular to the fenestration, multiply daylight extent factor (DEF) by the head height of the fenestration or till an opaque partition higher than head height of the fenestration, whichever is less.

II. In the direction parallel to the fenestration, daylit area extends a horizontal dimension equal to the width of the fenestration plus either 1 meter on each side of the aperture, or the distance to an opaque partition, or one-half the distance to an adjacent fenestration, whichever is least.

1447	III. For skylights, calculate the horizontal dimension in each direction equal to the
1448	top aperture dimension in that direction plus either the floor-to-ceiling height
1449	(H) for skylights, or 1.5 H for monitors, or H or 2H for the sawtooth configuration,
1450	or the distance to the nearest 1 meter or higher opaque partition, or one-half
1451	the distance to an adjacent skylight or vertical glazing, whichever is least.
1-01	
1452	B. A separate architectural plan shall be prepared with all daylit areas marked on the
1453	floor plans. A summary shall be provided showing compliance as per Table 58.
1454	C. Glazed façades, with non-cardinal orientation, shall be categorized under a
1455	particular cardinal direction if its orientation is within \pm 45 degrees of that cardinal
1456	direction.
1457	D. Any surrounding natural or man-made daylight obstructions shall not be considered
1458	in this method.
1450	
1459	9.12 EXAMPLE FOR POST OCCUPANCY WASTE GENERATION
460	A residential housing complex having area 500 sq.m, consisting of 10 dwelling units, considering
461	4 occupants each housing. According to the National Building Code (NBC) guidelines, the
462	recommended range of waste generation is between 0.3 to 0.6 kilograms per capita per day,
1463	comprises 40% organic waste and 60% inorganic waste.
1464	
465	Calculation for estimation of waste generation:
466	Step 1: Calculate the total number of occupants in the residential complex:
467	Total number of occupants = Number of dwelling units x occupants/unit
468	$=10 \times 4 = 40$
1469	
470	Step 2: Calculate the total waste generation per day Considering the upper range 25 of the
471	NBC guidelines:
472	Total waste generation = Total number of occupants x waste generation per capita
473	= 40 occupants x $0.6 \text{ kg/person/day}$
474	=24 kilograms per day
475	
476	Step 3: Calculate the organic and inorganic waste generation:
477	Organic waste generation = Total waste generation x Organic waste percentage
1477	$= 24 \text{ kg/day x 40\%} = 9.6 \text{ kilograms per day (say 10 \text{ kg})}$
1478 1479	=24 kg/ddy x 40% = 9.8 kilograffis per ddy (sdy 10 kg) Inorganic waste generation = Total waste generation x Inorganic waste percentage
480	=24 kg/day x 60% = 7.2 kilograms per day
1481	
482	9.13 CALCULATION OF AREA REQUIREMENT FOR STORING ORGANIC WASTE

The volume required to store 10 kg (from 9.12) of organic waste depends on the density of the

waste and how compacted it is. Organic waste's density can vary based on its composition, moisture content, and packing method.

²⁵ Considering the upper range of waste generation, the range is given in NBC 2016 edition. According to Mohua (Ministry of Housing and Urban Affairs), there is an annual increase in per capita waste generation of about 1.3%.

- 1487 Let's consider an example where the organic waste has a density of 0.5 kg/L. Remember that
- 1488 this is an approximate value, as organic waste density typically ranges from 0.2 kg/L to 0.8 kg/L,
- 1489 depending on the specific waste composition.

- 1491 To calculate the volume required:
- 1492
- 1493 Volume = Mass / Density
- 1494 Volume = 10 kg / 0.5 kg/L = 20 L
- 1495 As a rule of thumb, 1000 liters require 1 cubic meter of volume
- 1496 Then 20 L waste required = **0.020 m³**
- 1497 (For a thumb rule, it is calculated that 10 kg waste required 0.02 $m^{\rm 3\rm j}$
- 1498
- 1499 So, if the organic waste has a density of 0.5 kg/L, you would need approximately 20 liters of
- 1500 volume to store 10 kg of organic waste.

1501 9.14 CALCULATION FOR AREA REQUIRED IN VERMICOMPOSTING

1502	Considerations:
1503	
1504	Daily organic waste generation: 10 kg (from 9.12)
1505	Retention time: 8 weeks (Source: CPCB) = 56 days = 60 days (round off)
1506	Worm density: Assuming a worm density of 0.5 kg/m².
1507	Vermi bed depth: 0.6 m (Should not be more than 600mm for better efficiency)
1508	Vermi bed width: 1.5 m (Should not be more than 1500mm for easy turning and rotation)
1509	Storage density: 10 kg per 0.02 m ³
1510	
1511	Calculation:
1512	
1513	Calculate the total waste produced during the retention time:
1514	Total waste generated in 60 days = Daily waste generation x Retention time
1515	Total waste = 10 kg/day x 60 days = 600 kg
1516	
1517	Calculate the volume of vermi beds required to handle this waste:
1518	Total vermi bed volume required = Total waste / Storage density
1519	= (600 kg / 10) * 0.02 m³ = 1.2 m³
1520	
1521	Calculate the total area of vermi beds required:
1522	Vermi bed area = Vermi bed volume / Vermi bed depth
1523	$= 1.2 \text{ m}^3 / 0.6 \text{ m} = 2 \text{ m}^2$
1524	
1525	Determine the length of vermi beds required:
1526	Length of vermi beds = Vermi bed area / Vermi bed width
1527	= 2 m ² / 1.5 m = 1.33
1528	
1529	Hence, size of required pit/bed per cycle: 0.6 m X 1.5 m X 1.33 m
1530	Number of beds: 2
1531	Total area required for 10 kg per day organic waste = $2 \text{ m}^2 * 2 = 4 \text{ m}^2$
1532	
1533	Please note that storage and segregation areas are not considered in this calculation.

1534 9.15 EXAMPLE FOR CONSTRUCTION WASTE DIVERSION ESTIMATION:

S. No.	Classification of waste	Construction Waste	Total Waste Generated (Kg)	Total Waste Diverted (Kg)	% Diverted from landfills	Method of Diversion
		Total waste generated on site	10000			
1		Concrete Waste	1200.0	1200.0	100%	Reused on site
2		Steel Scrap	2400.0	2400.0	100%	Sold to recycler Handover Tc
3	-	Glass Waste Aluminium	300.0	300.0	100%	municipal authority
4	Non	Framing Waste	500.0	500.0	100%	Sold to recycler
5	Hazaradous	Gypsum Board	400.0	400.0	100%	Sold to recycler
6 7	-	Brick Waste Tile Waste	1300.0 750.0	1300.0 750.0	100%	Reused on site Reused on site
8	-	Wooden Ply Waste	700.0	700.0	100%	Sent to Recycler
9		AAC Blockwork	1300.0	1300.0	100%	Reused on site
10	- Packaging	Cardboard Packaging Waste	700.0	700.0	100%	Sold to recycler
11		Plastic Packaging Waste	150.0	150.0	100%	Sold to recycler
12	Hazaradous	Hazaradous Waste	300.0	300.0	100%	Handover To municipal authority
		Total waste o landfills (Kg)	diverted from		10000.0	

1535

Table 57: Calculation example for construction waste management

CHAPTER 10: TERMINOLOGY & DEFINITIONS 1538

1539

Α Above Grade area: It is the carpet area plus the thickness of outer walls and the area covered 1540

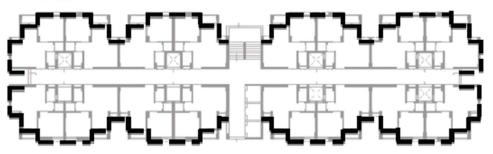
1541 by balcony, expressed in meters, and subtracting the basement area.

1542 Addition: An extension or increase in the carpet area or height of a building or structure.

1543 Affordable Housing Projects: Affordable houses are Dwelling Units (DUs) with Carpet Area less 1544 than 60 sqm. It also includes Economically Weaker Section (EWS) category and Lower Income 1545 Group (LIG) category (LIG-A: 28-40 sq. m. and LIG-B 41- 60 Sq.m). Projects using at least 60 1546 percent of the FAR/ FSI for dwelling units of Carpet Area not more than 60 sqm. will be 1547 considered as Affordable housing projects. This definition could be changed time to time by 1548 Ministry of Housing & Urban Affairs and respective states and latest definition for the respective 1549 state shall be considered.

1550 Affordable housing scheme: The Pradhan Mantri Awas Yojana (PMAY), also known as, 1551 Affordable housing scheme, including any notification of change in name of the aforesaid 1552 scheme, is an initiative provided by the Government of India which aims at providing 1553 affordable housing to the urban poor.

1554 Air Changes per Hour (ACH): Air Changes per Hour (ACH) is a measurement that quantifies the 1555 number of times the air within a space is completely replaced with fresh air within a one-hour 1556 time period. It indicates the effectiveness of ventilation or air exchange in a given space.


1557 Alteration: A change from one type of occupancy to another or the removal of part of a 1558 building, or any change to the structure, such as the construction of, cutting into or removal 1559 of any wall, partition, column, beam, joist, floor or other support, or a change to or closing of 1560 any required means of ingress or egress or a change to the fixtures or equipment.

1561 Authority Having Jurisdiction: The Authority which has been created by a statute and which, 1562 for the purpose of administering the Code, may authorize a committee or an official or an 1563 agency to act on its behalf.

1564

В

1565 Building Envelope: The elements of a building that separate the habitable spaces of dwelling 1566 units from the exterior and are exposed to the ambient (i.e., exposed directly to external air 1567 and opening into balconies). It does not include walls facing open corridors and enclosed 1568 shafts, as well as walls of common services such as lifts and staircase. (See Figure 2: Walls 1569 included in the definition of building envelope. Dotted lines show the walls included in the 1570 definition of building envelope in this code.)

1571 1572

1573

Figure 2: Walls included in the definition of building envelope

1574 Building services: Basic MEP services such as firefighting systems, elevators and escalators, 1575 HVAC systems, gas supply systems, building management systems, power backup, water 1576 supply, water recycling etc. that are provided for the comfort and available to all dwelling 1577 units/apartments of the building or building complex.

1578 Built-up area: It is the carpet area plus the thickness of outer walls and the area covered by 1579 balcony, expressed in meters. 1580 С 1581 Carpet Area²⁶: Carpet area is the net usable floor area of a dwelling unit, excluding the area 1582 covered by the external walls, areas under services shafts, exclusive balcony or verandah area 1583 and exclusive open terrace area, but includes the area covered by the internal partition walls 1584 of the dwelling unit. 1585 Color Rendering Index (CRI): Color Rendering Index (CRI) is a quantitative measure of the 1586 ability of a light source to accurately reveal the true colors of objects compared to a reference 1587 light source. It is a scale ranging from 0 to 100, with higher values indicating better color 1588 rendering. 1589 Common Area: Amenities such as corridors, hallways, lobby, staircases, lifts, pool, parking areas 1590 etc. provided for the comfort and available for use to all occupants, owners, tenants, or users 1591 of the building or building complex expressed in m2. 1592 Construction Waste: Construction waste is any substance, matter, or thing that is produced as 1593 a result of construction work. 1594 Cool roof: The 'coolness' of a roof is influenced by its solar reflectance and thermal emittance. 1595 D 1596 Dwelling unit: An Independent housing unit with separate facilities for Living, Cooking and 1597 sanitary requirement. Ε

1598

1599 ENS 2024 building: Any building in which all covered spaces comply with the requirements of 1600 §3 of the Eco-Niwas Samhita 2021

1601 ENS 2024 point: It is the algebraic sum of the points that are obtained by meeting the 1602 requirements of Eco-Niwas Samhita 2021

Energy Efficiency Ratio (EER): the ratio of net cooling capacity in kW to total rate of electric 1603 1604 input in watts under design operating conditions

1605 Envelope Area: Envelope area (excluding roof) of dwelling units is the overall area of the 1606 building envelope (see definition 'Building Envelope'). It is the gross external wall area (includes 1607 the area of the walls and the openings such as windows and doors), with measurement taken 1608 horizontally from outside surface to outside surface and measured vertically from the top of 1609 the floor to the top of the roof.

1610 F

1611 Floor area: The net enclosed area expressed in m2 of a floor in the building including circulation 1612 spaces like lobby or corridors, service areas and semi-open spaces such as verandah or 1613 balcony.

1614 H

1615 **High Rise Buildings:** A building above 4 stories, and/or a building exceeding 15 meters or more in height (without stilt) and 17.5 meters (including stilt). 1616

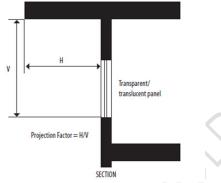
1617

1618 Integrated Energy Efficiency Ratio (IEER): It is a single-number cooling part load efficiency 1619 figure of merit calculated as specified by the method described in ANSI/AHRI Standard 1620 340/360/1230.

²⁶ Source: The Real Estate (Regulation and Development) Bill, 2016 as passed by the Rajya Available Sabha on the 10 March 2016. at http://164.100.47.4/BillsTexts/RSBillTexts/PassedRajyaSabha/realest-238-RSP-E.pdf (accessed on 1 May 2018)

1621 Indian Seasonal Energy Efficiency Ratio (ISEER): It is the ratio of the total annual amount of heat 1622 that the equipment can remove from the indoor air when operated for cooling in active mode 1623 to the total annual amount of energy consumed by the equipment during the same period. 1624 L 1625 Lighting Power Density (LPD): It is the total of the maximum power rating of the lamps (in Watts) 1626 in a space, other than those that are plugged into socket outlets for intermittent use such as 1627 floor standing lamps, desk lamps, divided by the area of the space (in meters). 1628 Low Rise Buildings: A building equal or below 4 stories, and/or a building up to 15 meters in 1629 height (without stilt) and up to 17.5 meters (including stilt). 1630 Low energy comfort systems: Space conditioning or ventilation systems that are less energy 1631 intensive then vapor compression-based systems. 1632 Luminous Efficacy (LE): Total luminous flux emitted from a luminaire upon input power, 1633 expressed in lumens per Watt. 1634 Μ 1635 Mechanical Efficiency: It is a dimensionless number that measures the effectiveness of a 1636 machine in transforming the power input to the device to power output. 1637 Mixed land-use building projects: A single building or a group of buildings used for a 1638 combination of residential, commercial, business, educational, hospitality and assembly 1639 purposes 1640 Mixed-mode ventilated: The building in which natural ventilation is employed as the primary 1641 mode of ventilating the building, and air conditioning is deployed as and when required. 1642 Ν 1643 Non-opaque Building Envelope Components: Non-opaque building envelope components 1644 include transparent/translucent panels in windows, doors, ventilators, etc. 1645 Ο Openable area of dwelling unit: The total openable area expressed in m2 of a dwelling unit is 1646 1647 the sum of openable area of all windows and ventilators opening directly to the external 1648 ambience, open balcony, verandah, corridor and or shaft. 1649 Exclusions: Doors opening into corridors and external doors on ground floor (for e.g., ground 1650 floor entrance doors or back-yard doors). 1651 Opaque Building Envelope Components: Opaque building envelope components include 1652 walls, opaque panels in doors, windows, ventilators, etc. 1653 Openable Window-to-Floor Ratio (WFRop): The openable window-to-floor ratio (WFrop) is the 1654 ratio of the total openable area to the total carpet area of dwelling units. the total openable 1655 area of a dwelling unit is the addition of openable area of all windows and ventilators, opening 1656 directly to the external air, an open balcony, 'verandah', corridor or shaft; and the openable 1657 area of the doors opening directly into an open balcony. 1658 Exclusions: Doors opening into corridors and external doors on ground floor (for e.g., ground 1659 floor entrance doors or back-yard doors). 1660 Organic waste: Including but not limited to, kitchen waste (food scraps, fruit and vegetable 1661 peels, tea leaves, and coffee grounds etc.), garden waste (pruning/ cutting waste, shredded 1662 leaves, mulches, flowers etc.). 1663 **Orientation Factor** (ω): It is a measure of the amount of direct and diffused solar radiation that 1664 is received on the vertical surface in a specific orientation. This factor accounts for and gives 1665 weightage to the fact that the solar radiation falling on different orientations of walls is not 1666 same. 1667 Ρ 1668 Packaging construction waste: Including but not limited to cement bags, Wooden crates and 1669 pallets, Cardboard boxes, Plastic wrapping and shrink wrap, Foam and bubble wrap, 1670 Strapping bands and steel wires, PE film or plastic sheeting, Plastic or metal 1671 drums/buckets/containers, Corrugated plastic sheets, specialized packaging etc.

1672 Plot Area: A parcel (piece) of land enclosed by definite boundaries expressed in m2. Projection


1673 Distance: It is the horizontal depth, expressed in meters, of the external shading projection

1674 Projection Factor, Overhang: Projection factor (overhang) is the ratio of the horizontal depth

1675 of the external shading projection to the sum of the height of a non-opaque component and

1676 the distance from the top of the same component to the bottom of the farthest point of the

1677 external shading projection, in consistent units (Figure 3).

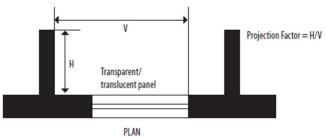

1678 1679

Figure 3: Projection factor, overhang

1680 Projection Factor, Side Fin: Project factor (side fin) is the ratio of the horizontal depth of the

1681 external shading projection to the distance from a non-opaque component to the farthest

1682 point of the external shading projection, in consistent units (Figure 4).

1683 1684

Figure 4: Projection factor, side fin

1685 **Residential Envelope Heat Transmittance (RETV):** RETV is the net heat gain rate (over the 1686 cooling period) through the building envelope of dwelling units (excluding roof) divided by the 1687 area of the building envelope (excluding roof) of dwelling units. Its unit is W/m2.

- 1688 Solar Heat Gain Coefficient (SHGC)²⁷: SHGC is the fraction of incident solar radiation admitted
- 1689 through non-opaque components, both directly transmitted, and absorbed and subsequently
- 1690 released inward through conduction, convection, and radiation (Figure 5).

²⁷ Bureau of Indian Standards (BIS). 2016. National Building Code of India 2016. New Delhi: BIS.

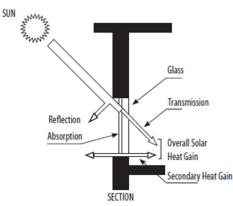


Figure 5: Solar heat gain through a non-opaque component

1693

R

1694 Regularly Occupied Spaces: Regularly occupied spaces include living room, bed rooms,
 1695 dining room, kitchen, etc.,

1696 Renewable Energy Systems: Energy from renewable non-fossil energy sources, e.g., solar 1697 energy (thermal and photovoltaic), wind, hydropower, biomass, geothermal, wave, tidal, 1698 landfill gas, sewage treatment plant gas and biogases. A resource that is available naturally, 1699 harnessed, and can be replenished.

1700 **Residential Building(s):** Residential building(s) (including affordable housing) include any 1701 building in which sleeping accommodation is provided for normal residential purposes with or 1702 without cooking or dining or both facilities. This includes:

1703 i. One- or two-family private dwellings: These shall include any private dwelling, which is
 1704 occupied by members of one or two families and has a total sleeping accommodation for not
 1705 more than 20 persons.

1706 ii. Apartment houses: These shall include any building or structure in which living quarters
1707 are provided for three or more families, living independently of each other and with
1708 independent cooking facilities. This also includes group housing.

1709 However, following buildings are excluded for the purpose of this code.

Lodging and rooming houses: these shall include any building or group of buildings under the
same management in which separate sleeping accommodation on transient or permanent
basis, with or without dining facilities but without cooking facilities for individuals, is provided.
This includes inns, clubs, motels, and guest houses.

Dormitories: these shall include any building in which group sleeping accommodation is provided, with or without dining facilities for persons who are not members of the same family, in one room or a series of closely associated rooms under joint occupancy and single management. For example, school and college dormitories, students, and other hostels and military barracks.

1719 Hotels: these shall include any building or group of buildings under single management, in 1720 which sleeping accommodation is provided, with or without dining facilities.

1721 **Retrofit:** providing or adding something with a building component or feature not fitted when 1722 the building or building complex was first constructed.

Roof Gardens: In the case of roofs with roof gardens on earth fill for plantation or lawn, the thermal resistance of the earth fill can be taken into the calculation of the thermal transmittance (U value) of the roof. Some of the heat absorbed by the earth fill is also released into the atmosphere due to evapotranspiration of irrigation water from the roof garden, thus giving additional benefit. 1728 **R – Value:** The measurement of the thermal resistance of a material which is the effectiveness 1729 of the material to resist the flow of heat, i.e., the thermal resistance (m2·K/W) of a component

- 1730 calculated by dividing its thickness by its thermal conductivity.
- 1731 **S**

1732 Service Value: The Service value is the ratio of air delivery to power input.

1733 SHGC Equivalent: SHGC Equivalent is the SHGC for a non-opaque component with a
 1734 permanent external shading projection. It is calculated by multiplying the External Shading
 1735 Factor (ESF) with the SHGC of unshaded non-opaque component.

Solar reflectance: Solar reflectance is the ratio of solar radiation reflected by a surface to the solar radiation incident upon it. Solar reflectance is measured on a scale of 0 to 1. A reflectance value of 0 indicates that the surface absorbs all incident solar radiation, and a value of 1 denotes a surface that reflects all incident solar radiation. The term 'albedo' is often used inter-changeably with solar reflectance.

Solar reflectance Index (SRI): That incorporates both solar reflectance and emittance in a single value and quantifies how hot a surface would get relative to standard black and standard white surfaces. It is the ability of a material to reject solar radiation, as shown by a small temperature rise.28 The SRI's of a standard black surface (having reflectance of 0.05 and emittance of 0.9) and a standard white surface (of reflectance 0.8 and emittance 0.9) are taken as 0 and 100, respectively.

For more detailed information on cool roof, please refer Cool roofs for Cool Delhi: Design
 Manual.²⁹

1749 **T**

1750 Thermal Insulation: A material used to reduce heat loss or gain through thermal envelope1751 component.

1752 **Thermal emittance:** Thermal emittance is the relative ability of a material to reradiate absorbed 1753 heat as invisible infrared radiation. Emittance, measured from 0 to 1, is defined as the ratio of 1754 the radiant flux emitted by a body to that emitted by a black body at the same temperature 1755 and under the same conditions.

According to ECBC 2017 cool roof requirement, roofs with slopes less than 20 degrees shall
have an initial solar reflectance of at least 0.6 and an initial emittance of 0.9.

The Solar reflectance Index (SRI) is a term that incorporates both solar reflectance and emittance in a single value and quantifies how hot a surface would get relative to standard black and standard white surfaces. It is the ability of a material to reject solar radiation, as shown by a small temperature rise.32 the SRI's of a standard black surface (having According to ECBC 2017 cool roof requirement, roofs with slopes less than 20 degrees shall have an initial solar reflectance of at least 0.6 and an initial emittance of 0.9.

1764 **Thermal Transmittance (U-Value):** Also known as U-Factor, thermal transmittance (U-value) is 1765 the heat transmission in a unit of time through a unit of area of an envelope component or 1766 insulating material, induced by a unit of temperature difference between conditioned and 1767 unconditioned spaces. The U-value for an envelope component indicates its ability to reduce 1768 heat transfer through conduction. U-value is expressed as W/m2·K.

1769

U

U Value: Thermal transmittance (U value) is the heat transmission in unit time through unit area of a material or construction and the boundary air films, induced by unit temperature

²⁸ Bureau of India Standards (BIS). 2016. National Building Code 2016. Part 11. New Delhi: BIS 29 Shakti Foundation. 2017. Cool Roofs for Cool Delhi: Design Manual. Available at http://shaktifoundation.in/ wp-content/uploads/2017/06/cool-roofs-manual.pdf (accessed on 01 May 2018)

1772 difference between the environments on either side. Unit of U value is W/m² K. The U value for 1773 a wall/roof/glazing indicates its ability to transfer heat through conduction.

1774

V

1775 Visible Light Transmittance (VLT): VLT is the ratio of the total transmitted light to the total incident 1776 light. It is a measure of the transmitted light in the visible portion of the spectrum through a 1777 material.

1778 Volatile Organic Compounds (VOC): Volatile Organic Compounds (VOCs) are a group of 1779 organic chemicals that easily evaporate at room temperature. They are commonly found in 1780 various products such as paints, solvents, cleaning agents, adhesives, and building materials. W

1781

1782 Window-to-Wall Ratio (WWR): WWR is the ratio of the non-opaque building envelope 1783 components area to the envelope area (excluding roof) of dwelling units.

1784 Waste Management: Waste management refers to the activities and actions required to 1785 manage waste from its start till its disposal. This includes collection, transport, treatment and 1786 disposal of waste together with monitoring and regulation.

1789 ANNEXURES

1790 ANNEXURE 1: COMPLIANCE DOCUMENTS

1791 The building project can demonstrate compliance using the software/toolkit that has been

approved by the BEE or authority having jurisdiction and submit the following list of documentsto show compliance with the code.

S.No.	Compliance Document	
1.	Sustainable Site Management	
1a.	Site Plan highlighting contours, topsoil preservation area, mature trees and their preservation along with existing features of the site like existing water bodies, power or communication lines, sewerage lines.	
1b.	Accessibility Plan highlighting measures to ensure universal accessibility including features for differently abled, children and elderly.	
1c.	 Landscape Plan highlighting the following: planting beds, species being planted along with measures taken to preserve local biodiversity and ecology; Total paved area on the site along with the kind of paving used. 	
2.	Envelope and Electro-Mechanical and Renewable Energy System	
		I
2a.	Construction drawings and specifications shall show all pertinent data and features of the building, equipment, and systems in sufficient detail to permit the authority having jurisdiction to verify that the building complies with the requirements of this code.	
2b.	 Details shall include, but are not limited to: Building envelope: opaque construction materials and their thermal properties including thermal conductivity, specific heat, density along with thickness; fenestration U-factors, solar heat gain coefficients (SHGC), visible light transmittance (VLT); overhangs and side fins and operable window area; Building services: Common area lighting (lamp efficacy for lamps and their controls); pump efficiencies; elevator technologies and their controls; transformer losses; power distribution losses; power factor correction devices; basement ventilation controls; efficiency of EV charging infrastructure and electric check metering and monitoring system. Indoor electrical end-use: Indoor lighting (type, number, and wattage of lamps and ballasts; automatic lighting shutoff, occupancy sensors, and other lighting controls); ceiling fans star labelling; service hot water type and their efficiency; air- conditioners (system and equipment types, sizes, efficiencies, and controls); 	

	Renewable energy systems: system peak generation capacity, solar water heating system; technical specifications, renewable energy zone area.	
3.	Water Conservation	
3a.	Landscaping Plan highlighting planting beds, turf grass and irrigation layout.	
3b.	Good for construction plan and sections of the building highlighting the plumbing layout along with the dual pipes system, water recycling & reuse provisions.	
3с.	Good for construction site plan and building plans highlighting the rainwater harvesting system, storage tanks and recharge provisions.	
3d.	Specifications of various sanitary fitting and sanitary ware used along with copy of purchase invoice/ BoQ/ tender documents.	
4.	Waste Management	
4a.	Declaration for safe handling and disposing C&D waste as per CPCB guidelines/ (C & D Waste Management Rules, 2016).	
4b.	An inventory of the waste generated during construction by either weight or volume, but not both shall be developed. The inventory shall classify the quantities of waste generated as per clause 7.2.1.	
4c.	 During Construction A waste management plan shall be developed which include: Estimate the quantum of waste generated daily Designate an area for collection of daily waste Site Logistics plan including: designated collection, segregation and storage areas for construction waste as per categories as mentioned in Chapter 7: clause 7.2.1.2. Detailed implementation plan for reuse of waste on site as per clause, Chapter 7: clause 7.2.1.3. Detailed implementation plan for resale of recyclable waste to recyclers or municipal authorities as per Chapter 7: clause 7.2.1.4. 	
4d.	Post Occupancy: Site and Building floor plans including; highlighted area for floor wise waste collection, with different color bins, organic waste composting location with catering capacity.	

 5a. Good for construction' plan showing openings (doors, windows ar ventilators), and enclosed parking highlighting ventilation and exhausystems. 5b. Calculation of lux levels for common areas, exterior lighting and interilighting (if applicable). 5c. Calculation of RETV and WFRop for each typical block. 5d. Specifications of VOC content in paints, coatings, adhesives, ar 	ust 🗌
lighting (if applicable). 5c. Calculation of RETV and WFRop for each typical block. 5d. Specifications of VOC content in paints, coatings, adhesives, and the second se	or
5d. Specifications of VOC content in paints, coatings, adhesives, ar	
sealants. (With copy of purchase invoice/ BoQ/ tender documents).	
5e. Specifications of glass provided by the manufacturer. (With copy purchase invoice/ BoQ/ tender documents).	of
5f. Specifications of various lighting fixtures used. (With copy of purchas invoice/ BoQ/ tender documents)	
5g. Description of ventilation and exhaust system installed in the enclose parking with showing ACH calculation.	ed
5h. 'Good for construction' floor plan of enclosed parking showing the placement of sensors should be submitted.	

1705	
1795	ANNEXURE 2: EMBODIED ENERGY
1796	
1797	RATIONALE
1798	Embodied energy in construction in India (especially in "formal' residential buildings of the sort
1799	that are covered by the ENS 2024 code) can sometimes be of the order of magnitude of many
1800	decades of operating energy use ³⁰ and therefore is very significant to consider when such a
1801	code is being developed.
1802	
1803	However, this was true for non-air-conditioned housing stock, and it seems likely that, like in the
1804	developed economies, increasing consumption of operating energy (e.g., for appliances,
1805	common area services, air-conditioning etc.) may cause the embodied energy to become
1806	less significant compared to operating energy. Still, this is an important area to include in the
1807	code.
1808	
1809	Embodied energy is also important because much of it is consumed in the form of primary
1810	energy (coal, oil, fuels) causing direct pollution and carbon emissions.
1811	Embodied energy is the sum of all energy used in the construction process, i.e., in the product,
1812	transport and installation: from the extraction of raw materials, manufacture of materials and
1813	fabrication of products, to their transportation and installation in buildings. It is often measured
1814	in megajoules per square meter. But its units can also be kWh(th) (Thermal Kilowatt hours, with
1815	1kWh(th) being equivalent of 3600 kJ) per sqm of built-up-area, making it more easily
1816	comparable with EPI of the ENS 2024 code.
1817	
1818	Cement and steel are the major contributors of embodied energy in residential building
1819	construction in India. According to the study conducted by Jadavpur University ³¹ , 98% of the
1820	embodied energy is attributed to the embodied energy of the materials used and 2% is the
1821	contribution of actual erection of the building. Unfortunately, embodied energy is often
1822	"hidden" in industry for the manufacture and transport of materials, and the transportation of
1823	workers.
1824	
1825	Institutes of technological research need to be tasked with creating standards for embodied
1826	energy benchmarks based on average and best practice. If necessary, this research needs to
1827	attract funds from the building industry and foundations.
1828	
1829	Embodied Energy measured in kWh(th)/sqm and Operating Energy measured in kWh(th)/sqm.
1830	year can be combined. In order to combine the (capital) embodied energy with the
1831	operating energy, it is necessary to merge the two to units equivalent of kWh(th)/sqm. year so
1832	that a single number can represent the energy performance of a project.
1833	· · · · · · · · · · · · · · · · · · ·
1834	In a recent piece of research for Technology Information Forecasting and Assessment Council
1835	of India ³² , it was found that the best way to translate from kWh(th)/sqm (Embodied Energy) to
1836	kWh(th)/sqm. year (equivalent Operating Energy) would be to set up a notional or actual
1837	discount/ replacement rate of construction taking its nominal life, say, as:
	30 The Mud Village project, sponsored by HUDCO, entry by Studio Plus, 1987
	31 Embodied Energy Analysis of Multi-storied Residential Buildings in Urban India, S Bardhan -
	WIT Transactions on Ecology and the Environment, 2011
	32 Technology Vision 2035, Technology Information Forecasting and Assessment Council
	(TIFAC) 2014

- 50 years life leading to a 2% replacement rate of stock for mainstream buildings
- 20 years life leading to a 5% replacement rate of stock for temporary industrial materials
 (steel) buildings.
- 1841 And so, on

According to a study by HUDCO³³, affordable housing uses 4257 MJ/sqm of embodied energy and so at a rated life of 50 years (or 2% replacement rate), this is equivalent of 85 MJ/sqm.year or 23.6 kWh(th)/sqm.year which is substantial for a building without air-conditioning but low for a building with various mechanical systems using up substantial operating energy.

1846 This can be codified along with other benchmarks in the ENS 2024 code after suitable 1847 characterisation, study, analysis of best practices, and benchmarking.

1848 **NOTES**

- Embodied energy is given less importance in the affluent regions of the world since their operating energy is high. There are two methods to evaluate this energy: by process or by input-output.
- Researchers in the Indian Institute of Science ³⁴ identified process analysis as appropriate for embodied energy assessment in the Indian context.

One of the earliest researchers using process-based analysis of embodied energy, Dr.
 Mohan Rai, carried out studies at CBRI Roorkee in the early 1960s and made the first
 listing of embodied energy, sorted in descending order, as follows in Table 58: Materials
 and Embodied energy consumption:

1858 1859

Table 58: Materials and Embodied energy consumption				
Materials	Unit	kWh(th)	MJ	
Sheet Glass	sqm	74.199	267.1	
Linoleum	sqm	46.287	166.6	
Aluminium	kg	39.891	143.6	
PVC	kg	32.273	116.2	
Sanitaryware	kg	9.071	32.7	
Mild Steel	kg	7.327	26.4	
L.D. Polyethylene	kg	6.048	21.8	
Stoneware Pipes	kg	5.896	21.2	
Cement	kg	2.245	8.1	
Quick Lime	kg	1.756	6.3	
Bloated Clay Aggregate	kg	1.477	5.3	
Burnt Clay Roofing Tiles	each	1.233	4.4	
Burnt Clay Bricks	each	1.187	4.3	
Wood Particle Board	kg	0.861	3.1	
Sand Lime Bricks	each	0.773	2.8	
Clay Fly-Ash Bricks	each	0.643	2.3	

33 Accessed in December 2019 at https://www.slideshare.net/sslele456/embodied-energy-inresidential-cost-effective-units.

34 K.I. Praseeda, B.V. Venkatarama Reddy, Monto Mani, 2015. Embodied energy assessment of building materials in India using process and input–output analysis, Energy and Buildings, 86 (677-686), ISSN 0378-7788

Gypsum (Calcined)	kg	0.420	1.5
Brick Dust (Surkhi)	kg	0.384	1.4
Crushed Aggregate	kg	0.060	0.216

The table above shows (as is well-known) that the embodied energy of processed industrial materials like aluminium, steel and cement is much higher than relatively unprocessed and mined materials extracted from nature (like crushed aggregates). Natural and renewable materials such as timber may be deemed to have zero renewable energy. Therefore, all other things being equal, a concrete framed structure with cement and steel is worse than a load bearing structure with hardly any cement and steel and masonry (preferably non-fired) and funicular forms holding up the roof.

1869 ANNEXURE 3: BEST CONSTRUCTION PRACTICE

1870

1871 Energy can be consumed in bad practices that may be observed on building sites. This needs 1872 to be stopped but is currently outside the scope of the ENS 2024 code. Typical practices 1873 include excessive requirement of movement of fluids (like mixed concrete) or solids (like steel) 1874 on site due to bad layout, improper sizing of pipes to save initial costs but causing greater 1875 pumping power due to friction losses, an over- or under-reliance on assisted manual labour 1876 (which may be seen as a form of renewable energy), and industry having got used to fuel-1877 based services or energy-on-tap (firm energy) and so unable to convert to renewable energy 1878 such as solar photovoltaic systems (due to their being infirm, not available on-tap). Often 1879 machinery is also often designed so as to have very high starting surge loads, thereby making 1880 it impractical to invest in capital-intensive technologies (renewable) instead of fuel-based 1881 technologies, causing emissions and/or pollution. These areas need to be improved and then 1882 can be codified.

1883

Although according to the study conducted by Jadavpur University³⁵ 98% of the embodied energy is attributed to the embodied energy of the materials used and 2% is the contribution of actual erection of the building, it is important to look at this seemingly trivial 2% for the main reason that there can be a lot of energy wasted and emissions and pollution created by bad site practices, and also because better site practices lead to better buildings and saves cost for the builder, thereby (ultimately) resulting in more affordable construction.

- 1890
- 1891 To achieve this:
- Layout planning of sites should be made a course in civil engineering and project managers need to, by mandate, graduate in at least a one-semester course in this subject.
- Civil engineers need to be able to engage with concepts of renewable energy through manual labour and solar and wind energy systems and they, along with project managers, need to, by mandate, graduate in at least a one-semester course in this subject.
- Total energy losses due to waste and friction on site (per unit area of building being made) need to be analysed, benchmarked, and codified.
 - All these point to research directions that need to be undertaken (again by Civil Engineering departments in our Engineering Institutes).
 - Best industry standards for ratios of running energy: starting surge, need to be analysed, benchmarked, and codified, so that infirm energy sources such as solar photovoltaics may be able to be considered to meet the demand of energy on site. It may be noted that infirm energy sources such as solar photovoltaics could be seen to be a form of production of energy, and if managed well and with sufficient open area, with a good rental market created for solar photovoltaics or wind turbines, sites can in the future become energy-neutral for construction of buildings.
- 1910

1901

1902

1903

1904

1905

1906

1907

1908

1909

1911 Since research in this area is nascent, it has been kept out of the ENS 2024 code for now.

³⁵ Embodied Energy Analysis of Multi-storied Residential Buildings in Urban India, S Bardhan -WIT Transactions on Ecology and the Environment, 2011

1912 ANNEXURE 4: RETROFITTING OF RESIDENTIAL BUILDINGS

1913

1914 Retrofitting consists of additions and alterations to existing (and, in the context of the ENS 2024
 1915 code, residential) building stock and typically this is set into motion by building owners.

1916

1917 For reasons of poor research and difficult practice, this code is currently silent on retrofit 1918 provisions and this appendix is created because given the right conditions this situation may 1919 change. This code does not mention provisions for retrofit cases because of the principle that 1920 laws (and codes) should preferably not be applied retroactively (so we cannot declare a 1921 building not meeting standards before the standard was even made), but in doing so we lose 1922 out a large potential of building stock (say over 50% of the residential building stock in 2030 if 1923 we read the McKenzie report³⁶ that "nearly 70% of building stock that will be there in 2030 is 1924 yet to be built in India" and geometrically extrapolate it from 2010 when it was written to 2019 1925 today).

1926

1927 The following market innovations need to be encouraged to cover a large part of India's 1928 existing residential building stock even when they are not being added to or being altered:

- For apartment dwellers, before enforcing this code, there need to be financial (low-interest loan) instruments available or created whereby collective retrofitting may take place through collective action, for example changing of window or wall specifications through RWA action to comply with provisions of the ENS 2024 so that capital cost of such retrofits may be kept low per month.
- For individual house owners, there need to be encouragement of vendors who can audit and retrofit because until that is done the implementation of ENS 2024 code shall be resisted or "loopholed" by homeowners.
- For rental stock, these audits and retrofit companies can undertake audit and retrofit to meet the ENS 2024 code provisions either through RWA or through apartment owners' associations (this is more difficult but can be eased by easy upgrade costs accompanied by strict compliance demands).
- 1941

1942 It would help a lot if the improvements effected by RWAs or contractors can be documented 1943 in a standardized way and the improvements in performance recorded numerically on a 1944 plaque or certificate for the owners to take pride in retrofitting their homes. This can be 1945 designed like the BEE star labels for various appliances.

1946

1947 It is anticipated that since the primary means of enforcing the ENS 2024 code is at the time of 1948 municipal approval and completion, this code could be immediately applied (subject to 1949 state-by-state acceptance into law) at the time of application for addition and alterations of 1950 buildings.

1951

This would automatically exempt minor addition and alterations (such as raising internal walls, painting, etc.) For reference, these "minor" retrofits in existing buildings that do not need any permission according to Delhi Development Authority (DDA), similar to changes in buildings all over the country, are provided below:

³⁶ India's Urban Awakening: Building inclusive cities, sustaining economic growth (McKinsey Global Institute, April 2010)

1956 1957 Except from DDA37

- 1958 1. To convert existing barsati into room provided the wall is made of only 115 mm thick.
- 1959 2. Grills and glazing in verandah with proper fixing arrangement.
- 1960 3. Raising height of front and rear courtyard wall up to 7' height by putting up jali/ fencing.
- 1961 4. Providing door in courtyard wherever not provided.
- 1962 5. Providing sunshades on doors and windows wherever not provided with proper fixing arrangements.
- 1964 6. Closing the door.
- 19657. If the bathroom or WC are not having roof, these may be treated as open urinals and allowed.
- 1967 8. Raising the wall of balcony/terrace parapet with grill or glazing up to 5' height.
- 19689. Construction of open staircase (cat ladder) where no staircase has been provided forapproach to the terrace.
- 1970 10. To put provide additional PVC water tank at ground floor area without disturbing the1971 common passage.
- 1972 11. To provide an additional PVC water tank in the scooter/car garage at the surface level.
- 1973 12. To provide loft /shelf in the rooms without chase in the walls.
- 1974 13. To change the flooring with water proofing treatment.
- 1975 14. To remove half (41/2) brick wall.
- 1976 15. To make a ramp at front gate without disturbing the common passage /storm water drain.
- 1977 16. To provide sunshades or the outer windows up to 2'wide projection.
- 1978 17. To provide false ceiling in rooms.
- 1979 18. To make an opening of maximum size of 2'6" x1'9" for exhaust fan or air- conditioner in existing walls.
- 1981 19. Fixing of door in back and front courtyard.
- 20. Converting of window into Almirah subject to availability of light and ventilation as per
 building byelaws provided that no structural elements are disturbed and there is no
 projection extending beyond the external wall.
- 1985 21. Shifting of water storage tank/raising of parapet wall up to 5' height and putting additional water storage tank. Wherever the existing water storage tank capacity is less than 500 litres in a flat, a 500 litres tank can either replace the existing water storage tank or if possible, the additional tank can be added so as to make the total storage capacity up to 550 litres. However, such replacement/provision of additional tank will be done only on the locations specified for such tanks and the supporting beams will be required to be strengthened suitably. Parapet wall around terrace can be increased to a height of 5'.
- 1992 22. To shift the front glazing, rooms/windows up to existing chajja.

Not implementing retrofit cases for, say, 5 years, it can then be suggested that the ENS 2024 code could be made applicable to all Addition and Alterations cases that come for approval to ULBs. This will cover at least some 5% of existing building stock (say 10% of 50%) and simultaneously measures (1) through (3) in the last page need to be actively pursued in the market to make alterations proactively possible for existing building stock, even when not undertaking additions and alterations.

³⁷ http://www.dda.org.in/housing/pending_cases/permissible_alteration_housing.htm, accessed December 2019.

2000 Generally, alterations in themselves do not require municipal approval. The key changes that 2001 require getting municipal approval is increase of height / FAR / Ground Coverage, all of these 2002 are related to increasing the size of the home.

2003

Studying codes from other countries³⁸, it can be seen that whenever a project comes up for municipal sanction, the codes require the renovated project to comply with the code provisions. This should be recommended in India also.

2007 2008 This will leave out only that part of the existing building stock that has a completion certificate 2009 from the ULB and remains unchanged. In time it shall be added to (requiring ULB approval) or 2010 demolished and rebuilt (requiring ULB approval). Therefore, by the later part of this century the 2011 entire residential building stock shall become ENS 2024 compliant, even if market forces do not 2012 already make it so.

2013

38 There are many references. See for instance, the Residential Compliance Manual for the 2019 Building Energy Efficiency Standards, California, at https://ww2.energy.ca.gov/2018publications/CEC-400-2018-017/CEC-400-2018-017-CMF. pdf, or https://www.buildwaikato.co.nz/building-projects/additions-alterations/ from the Waikato Building Consent Group (WBCG) in New Zealand, both accessed in December 2019

2014 ANNEXURE 5: IMPROVED AIR COOLING

2015

2016 Residential buildings sector accounts for 24% of the electricity consumption and is the second 2017 largest consumer after industries. Within the building sector, the residential electricity 2018 consumption amounts to 259 TWh. Within this sector, with increasing affluence in the Indian 2019 middle class, there is a tendency (in warm humid, hot dry, composite and even moderate 2020 climates which always have some hot days) to create comfort by installing an air-conditioner 2021 or two. Capital costs of air conditioning is low compared to capital costs of building (today, 2022 cheap - and inefficient - air-conditioning can be as low as 5% of the building cost). EMI-based 2023 loans make it easy for even a lower middle-class family to install split air-conditioners at less 2024 than the monthly energy costs of running the same.

2025

2029

Use of air-conditioning therefore is a major hurdle in creating energy efficient residential stock in India, since it cannot be denied that it creates superior comfort in all sorts of conditions: warm humid, hot dry, composite, and moderate.

Often the rationale for a lower middle-class family, who realize that the energy bills are not easy to manage, is that they will use it minimally, only in the night and only in extreme weather, or by setting the thermostat up to higher temperatures. However, air-conditioning, with its superior performance in terms of managing humidity, is addictive, and there is a tendency for its use to increase to the limit of the users' paying capacity, and even beyond it.

- 2035
 2036 It is worse that in this economic class, the tendency is to procure cheap, lower rated inefficient
 2037 equipment, and install it in poorly insulated houses, which uses even more electricity than it
 2038 could.
- 2039

This causes residential air-conditioning to become a major barrier in energy efficiency (USAID, 2011) ³⁹. This issue is a major guzzler of energy in houses and needs to be mitigated by codification. However, since the research on this is ongoing, this has not yet been included in the ENS 2024 code.

2044

2045 On November 15, 2019, the Rocky Mountain Institute (RMI) in collaboration with the Ministry of 2046 Housing and Urban Affairs (MoHUA) of the Government of India (GoI) announced the results 2047 of a Global Cooling Prize competition, for Incentivizing the development of a residential 2048 cooling solution that will have at least five times less climate impact than standard 2049 residential/room air conditioners (RAC) units in the market today. This technology could 2050 prevent up to 100 gigatons (GT) of CO2-equivalent emissions by 2050, and put the world on a 2051 pathway to mitigate up to 0.5°C of global warming by 2100, all while enhancing living 2052 standards for people in developing countries around the globe.⁴⁰

2053

Therefore, the following are urgently required to be researched and implemented for Indian residences to become comfortable while remaining energy efficient, at capital costs that are affordable or can be made affordable by fiscal incentives or financial instruments:

³⁹ HVAC Market Assessment and Transformation Approach for India, PACE-D Technical Assistance Program, USAID, August 2014

⁴⁰ https://globalcoolingprize.org/ accessed in December 2019

Air-conditioning systems that can be used at higher set-point temperatures (say, up to 28 °C) in combination with ceiling fans. These require higher cfm of air to be pushed through (rather than the industry standard of 400 cfm per Ton) and a balance between refrigerant temperature, air flow, and set point since currently air-conditioning industry has optimised all systems for 22°C - 24°C. As the set point temperature is increased, the other parameters need to change. This kind of device will be ideal for bill- conscious lower middle classes even if they can progressively afford air-conditioning capex.

2065

Fiscal incentives or financial instruments to lower capex for improving house thermal performance to ENS 2024 code levels so that optimum (not too much) air-conditioning is installed. Unfortunately, at this point, the ENS 2024 code has been developed assuming that the cooling system is some form of air-conditioning.

2070

Rapid development and deployment of effective an acceptable intermediate technologies including adiabatic technologies, such as passive hybrid and active evaporative coolers, better natural ventilation, indirect evaporative coolers, or chilled coil indirect evaporative coolers, combined with fiscal incentives or financial instruments to lower capex for improving houses to a level so that sufficient passive cooling is managed and the number of days of usage of cooling or conditioning can be brought down.

2077

Alternative desiccant and evaporative systems for cooling (which are not yet welldeveloped). This may require fundamental research and cannot be expected to be rapidly deployed.

2081

Promotion of all these above alternatives through some cultural or social incentives (such as the BEE star rating system or TV promotions) so that they are not perceived as inferior to "complete" air-conditioning. This requires a major social change in attitude from progress seen as consumption only to progress seen as sufficiency, but is probably the most effective instrument for meeting and even bettering the EPI targets of the ENS 2024 code.

2087

2088 NATURAL AND ENS 2024 POINT VENTILATION

2089 If buildings can achieve comfort by natural or sense Point ventilation, this would entirely avoid 2090 the use of energy for mechanical cooling, and needs to be highly encouraged.

2091

2092 Natural ventilation fulfils two primary needs: first, it gives fresh air for satisfactory indoor quality; 2093 and, second when the outdoor temperature is comfortable (during night and transition 2094 seasons), it expels heat from inside the structure and facilitates cooling.

2095

Natural ventilation is of course not useful for cooling when the outdoor air is at a temperature higher than the set-point or desired indoor temperatures. This leads us to another very important concept of ventilation, ENS Point ventilation, opening the building very much to the outdoor air whenever the temperature outside is more comfortable than the inside, namely summer nights and winter days.

2101

The National Building Code 2016 (Part 8; 1; 5. Ventilation) or ASHRAE 62.1–2016 provide
standard ventilation rates for acceptable indoor quality.

To aid cooling a larger volume of airflow is required than the standard ventilation rates. The rate of ventilation by natural means through windows or other openings depends on, direction

- and velocity of wind outside and sizes and disposition of openings (wind action); and convection effects arising from temperature of vapour pressure difference (or both) between inside and outside the room and the difference of height between the outlet and inlet openings (stack effect).
- 2111

2112 One of the parameters to quantify the adequacy of natural ventilation is hourly air change 2113 rate (ACH), which is a proportion of how frequently the air volume inside a room is supplanted 2114 by outside air in 60 minutes. The larger the number, the better is the cooling potential through

- 2115 common ventilation. As a rule, 5 to 20 ACH gives good natural ventilation.
- 2116
- NBC 2016 discusses the design guidelines for natural ventilation in the 5.4.3 of Part 8: Building
 Services of the code.
- 2119
- 2120 Once the promotion of naturally ventilated buildings can be successfully undertaken, it should
- be possible to eliminate the use of air-conditioning or at least drastically reduce its use in all but the most affluent residences.
- 2123
- 2124 Ventilation in residential buildings can be provided by one of the following methods:
- a) Natural supply and natural exhaust of air (natural ventilation)
- b) Natural supply and mechanical exhaust of air (mechanical ventilation, see below)
- 2127 c) Mechanical supply and natural exhaust of air (mechanical ventilation, see below)
- 2128 d) Mechanical supply and mechanical exhaust of air (mechanical ventilation, see below).

2129 MECHANICAL VENTILATION

- 2130 There are a range of circumstances in which natural ventilation may not be possible or 2131 sufficient to attain thermal comfort:
- The building is too deep to ventilate from the perimeter.
- Local air quality is poor, for example if a building is next to a busy road. Local noise
 levels mean that windows cannot be opened.
- The local urban structure is very dense and shelters the building from the wind. Privacy
 or security requirements prevent windows from being opened.
- Internal partitions block air paths.
- The density of occupation, equipment, lighting and so on creates very high heat loads
 or high levels of contaminants.
- 2140

Some of these issues can be avoided or mitigated by careful design, and mixed mode or assisted ventilation might be possible, where natural ventilation is supplemented by mechanical systems. Naturally it is not desirable to go with mechanical ventilation where and ventilation could achieve the similar results.

2145

2146 Where mechanical ventilation is necessary it can be:

- A circulation system such as a ceiling fan, which creates internal air movement, but
 does not introduce fresh air.
- A pressure system, in which fresh outside air is blown into the building by inlet fans, creating a higher internal pressure than the outside air.

- A vacuum system, in which stale internal air is extracted from the building by an exhaust
 fan, creating lower pressure inside the building than the outside air.
- A balanced system that uses both inlet and extract fans, maintaining the internal air pressure at a similar level to the outside air and so reducing air infiltration and draughts.
- A local exhaust system that extracts local sources of heat or contaminants at their
 source, such as cooker hoods, fume cupboards and so on.

2157 **KITCHEN VENTILATION**

Kitchen is always the hottest space in a flat on account of the huge amount of heat produced due to cooking. The arrangement of a decent ventilation framework that can proficiently separate hot air from the kitchen before it blends with the encompassing air can help lessen the heat in the kitchen and adjoining spaces.

2162

For powerful natural ventilation of the kitchen, notwithstanding the window, an extra louvre opening ought to be given to further aid the movement of air.

2165

2168

2166 If the kitchen is ventilated utilizing a fume hood, the distance of the hood from the gas fire and 2167 the fume flow rate should be appropriately chosen for best ventilation of the kitchen.

2169 EVAPORATIVE COOLING

Evaporative cooling is a process that uses the effect of evaporation of water as a natural heat sink. The amount of sensible heat absorbed depends on the amount of water that can be evaporated. Currently this is the most promising area of reducing energy for cooling, except that it is largely ineffective in warm and humid seasons or climates. Sensible heat from the air is absorbed to be used as latent heat necessary to evaporate water.

2175

• **Direct Evaporative cooling (DEC):** In this system, commonly used in the form of a 2177 'desert' cooler, the outdoor air is brought into direct contact with water, cooling the air by 2178 converting sensible heat to latent heat. DEC systems could be divided into: Active DECs which 2179 are electrically powered to operate and Passive DECs that are naturally operated systems with 2180 zero power consumption. In DEC, the water content of the cooled air increases because air is 2181 in contact with the evaporated water. This strategy is useful in dry and hot climates.

2182

Indirect Evaporative Cooling: Indirect evaporative coolers operate by decreasing
 air sensible heat without changing its humidity, which is a distinct advantage over DEC systems
 (the final temperature approached can be dew point instead of wet bulb temperatures). In
 indirect evaporative cooling, evaporation occurs inside a heat exchanger and the absolute
 humidity of the cooled air remains unchanged. This strategy is even more effective in hot and
 dry climates that DEC and fairly effective for warm and humid climates, too.

2189 EPI FOR EVAPORATIVE COOLER

2190 The efficiency of the evaporative coolers is measured based on the evaporative efficiency
2191 which depends on the outside dry bulb temperature and relative humidity of the airstream.
2192 The EPI shall be estimated for Evaporative Coolers as shown below:

2193

EPI = [Total Wattage of fan(s) + Total wattage of pump(s)] * Hours of operation/ (1000 * Built-up area)

2195 Rationale for EPI calculation for evaporative cooler

2196 Parameters influencing EPI for evaporative cooler are:

170		
	Design Parameters	Technology Parameter
	Location (Climate)	 Direct evaporative cooling
	 Air delivery rate 	 Fan and pump motor types
	 Pump water circulation rate 	<u> </u>
	• Fan and Pump efficiencies	
	Controls	
197	Dew point based shut-off controller	
198	The EPI ranges from	
199	User inputs in calculating the EPI shall in	nclude:
200	Power rating of the fan motor (
201	Power rating of the pump moto	
202	2	
203	If a residence uses DEC or IEC or any o	of the natural, ENS 2024 point, or mechanical ventilation
204	strategies for cooling and avoids Car	not cycle-based air-conditioning altogether, then it is
205	proposed that it should automatically k	be able to meet the ENS 2024 code without undergoing
206	the rigorous process of showing comp	olete EPI calculation processes. This part has not been
207	codified but remains in this appendix c	as a proposal that may be considered.
	DISTRICT COOLING	
		ase or decrease without the need to change the main
	plant's capacity.	
	District appling indicator control man	sufacturing and distribution of cooling onergy. Chilled
223		going through the building's cooling system.
If a residence uses DEC or IEC or any of the natural, ENS 2024 point, or mechanical v strategies for cooling and avoids Carnot cycle-based air-conditioning altogether, proposed that it should automatically be able to meet the ENS 2024 code without un the rigorous process of showing complete EPI calculation processes. This part has codified but remains in this appendix as a proposal that may be considered.		

2225 THERMAL ENERGY STORAGE

Thermal storage may be used for limiting maximum demand, by controlling peak electricity load through reduction of chiller capacity, and by taking advantage of high system efficiency during low ambient conditions. Thermal storage would also help in reducing operating cost by using differential time-of-the day power tariff, where applicable.

The storage media can be ice or water. Water needs stratified storage tanks and is mostly viable with large storage capacity and has an advantage of plant operation at higher efficiencies but requires larger storage volumes. In case of central plant, designed with thermal energy storage, its location shall be decided in consultation with the air conditioning engineer. For roof top installations, structural provision shall take into account load coming on the building/structure due to the same. For open area surface installation, horizontal or vertical 2237 system options shall be considered and approach ladders for manholes provided. Buried

installation shall take into account loads due to movement of vehicles above the area.

2240 ANNEXURE 6: SMART HOME

2241

The concept of smart home is in existence for many decades; however, it has gained further importance in present scenario due to increase in demand for comfort and convenience (with growth of disposal income), increased dependence on appliances, increase in per capita electricity consumption and availability of rooftop solar PV and EV for potential onsite generation and storage respectively.

2247

Alongside these drivers at consumer end; technology advancement in the form of availability of high-speed computing devices (smart phones) and affordable internet data, reduction in size of IoT devices / sensors and by shifting sophisticated computing functions to cloud and development of complex algorithms to control systems as per user requirement and preference (using Artificial Intelligence) has provided fresh push to demand of smart home product and services.

2254

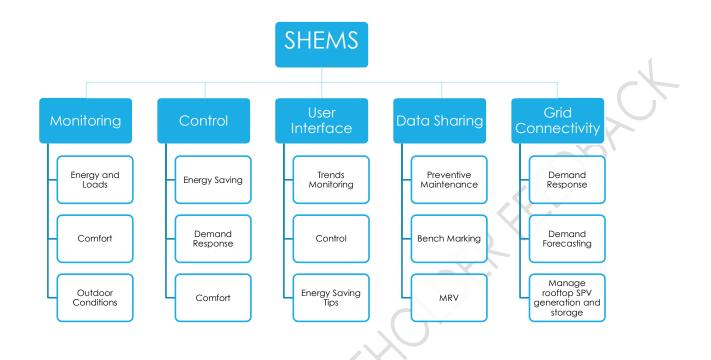
The need of utility-based demand response program to match the variable consumer demand (due to use of diverse appliances) with dynamic electricity supply (due to penetration of renewable energy in grid) is gradually making the smart home solutions a must have product/service in every home, to make it demand response ready.

2259

2260 To manage the energy use in a home in order to make optimum use of these opportunities 2261 and for minimizing the demand supply gap, there is need of Smart Home Energy Management System (SHEMS). SHEMS can be defined⁴¹ as the combination of a service and devices that 2262 2263 are designed to work together to deliver occupancy-based optimization of energy use. 2264 SHEMS⁴² consist of hardware and software, which are linked and integrated to, monitor energy 2265 usage, provide feedback on energy consumption, enhance control and provide remote 2266 access and automation provisions over appliances and devices that use energy in the home. 2267 SHEMS can deliver a range of services and benefits to households, which includes:

- 2268
- 2269 2270
- Energy management (energy efficiency)
- Demand response (contribute to regulating energy demand)
 - Electricity generation, storage and delivery to the grid
- 2271 2272

Comfort and convenience.


2273

The functionality of SHEMS can be broadly categorized in five areas that include monitoring, control, user interface, data sharing and grid connectivity. Schematics indicating the functionality of SHEMS and purpose of each functionality is given below:

⁴¹ Source: ENERGY STAR® Program Requirements, Product Specification for Smart Home Energy Management Systems,

https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20SHEMS%20Version%201.0%20Program%20 Requirements_0.pdf

⁴² Source: Sustainable Now, https://sustainable-now.eu/guide-to-home-energy-management-systems/

2278 The above-mentioned functionalities of SHEMS⁴³ can be operationalized with the support of:

- Physical sensors and devices
- Communication network for data transfer across smart devices, computation and data storage systems
- Data processing, decision making and relay commands as per defined logic or preference
- Smart appliances, devices and actuators to align the physical parameters to required level
- User interface to enable user to monitor, interact with smart home components and convey preferences
- Smart meter to monitor, record the energy consumption, load variation and to
 facilitate implementation of demand response program

- 2291 In smart home, energy and cost savings is achieved by:
- Preventing idle running of energy consuming system
 Optimization of adjustable building envelope elements to minimize energy demand
 Optimization of operating parameters to match user preference
 Shifting the operation of non-essential energy consuming systems to off peak time
 Making use of renewable energy generation source, whenever available to meet the
 energy demand

⁴³ Source: Based on the analysis conducted as part of BEE-GIZ study on Smart Home: Technology Assessment Study and Pilot Design through technical support of Deloitte Touche Tohmatsu India LLP and Prof. Vishal Garg (IIIT Hyderabad, India)

2298	٠	Optimization of charging and discharging of storage for cost saving
2299	٠	Smart home has significant potential for saving energy, however, the net energy
2300		savings depends on a range of factors, which include:
2301	٠	The rationale behind automation (comfort or energy saving)
2302	٠	Level and type of automation used (i.e., occupancy based on/off control or fine tuning
2303		of operating parameters based on user preference and weather conditions)
2304	٠	User behaviour (whether the user just looks at energy monitoring information or uses this
2305		information to change settings or change behaviour)
2306	٠	Power consumption by monitoring and control devices
2307	٠	Additional power consumption by appliances in standby mode due to inclusion of
2308		smart communication features.

Several studies have been undertaken at international level by various public and private agencies, including manufacturer associations, to estimate the energy savings from smart home solutions (product and services). Based on one of them, conducted by the Connected Device Alliance (CDA)⁴⁴, energy savings potential in a dwelling enabled with smart home devices and services could be in the range of 20-30% of the present household energy use, subject to the factors mentioned above.

2316

As technologies are optimised, developed and linked with the implementation of further energy efficiency opportunities in homes, the energy savings potential may increase. Smart Home requirement can be added to code along with other benchmarks in the ENS 2024 code after suitable characterisation, study, analysis of best practices, and benchmarking.

2321

2322 NOTES

2323 MINIMUM FUNCTIONALITY REQUIREMENT FOR SMART HOME

To ensure availability of minimum capabilities (regarding monitoring, control, user-interface, data sharing and grid connectivity) and to successfully deliver basic smart home experience to user, a minimum set of smart home devices should to be installed in a home. Table indicating the minimum device/capability requirement for each functionality of SHEMS is provided below in Table 59:

2329 2330

	Table 59: Functionality Requirement for smart Home
Functionality	Smart home device and/or solution
	Home level phase-wise energy and load monitoring
Monitoring	Two 15A outlets for energy use monitoring of two appliances One
	temperature and humidity sensor
	One occupancy sensor
	One AC Controller to control set point, mode of operations, ON/OFF
	with provision of receiving control signals
Control*	One Geyser Controller for ON/OFF, with provision of receiving control
	signals One Controllable light with provision of receiving control signal
User interface	Common user interface (app, voice or gesture based), to connect

44 A case study of barriers and solutions – Smart Home by Connected Device Alliance (CDA), which is a network of more than 350 government and industry participants that have come together to work on the energy efficiency opportunities provided by networked devices. Further information on the CDA is available at: https://cda.iea-4e.org

	smart home devices over single software package for energy use
	monitoring and control
Grid connectivity	Able to participate in utility demand response program
Data sharing	Typical daily indoor conditions, and device-wise energy consumption,
	and hours of usage to be reported once a month in anonymous way

2332 *All controllable devices to be able take control signals from hub/cloud

2333 Data privacy, cyber security, interoperability, safety and energy efficiency - minimum 2334 requirement for smart home devices and components.

2335 2336 All components, devices or elements of smart home that connects "directly or indirectly" to the internet must be equipped with "reasonable" security features, designed to prevent unauthorized access, modification, or information disclosure.

2338 2339

2340

2341

2337

 All components, devices or elements of smart home should follow common standards (for hardware and software), as prescribed by the concerned department for connected devices, enabling them to discover and communicate with one another, regardless of manufacturer, operating system, chipset or physical transport.

- All components, devices or elements of smart home should have adequate level of
 fire, electricity and other user health related safety features to avoid potential
 accidents, hazards and discomfort.
- All components, devices or elements of smart home should be energy efficient and should meet the minimum energy efficiency criteria set by concerned government department.

2349 **ANNEXURE 7: GUIDELINES FOR DESIGN FOR NATURAL VENTILATION**

2350

2351 This annexure provides a simple and illustrative interpretation of provisions for the location of 2352 windows in a room and its impact on natural ventilation. A detailed design guideline for natural 2353 ventilation is available in the NBC 2016⁴⁵ (Volume II, Part 8 Building Services, Section 1 Lighting 2354 and Natural Ventilation).

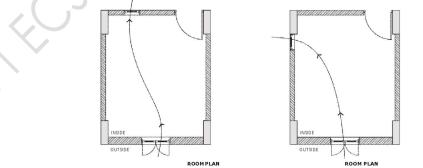
2355

2358

2356 The code gives the following provision for minimum WFR_{op} values for natural ventilation Table 2357 <u>60:</u>

Table 60: Minimum requirement of window-to-floor area ratio, WFRop

Climatic Zone	Minimum Wfrop (%)
Composite	12.50	
Hot-Dry	10.00	
Warm-Humid	16.66	
Temperate	12.50	
Cold	8.33	$()^{\vee}$

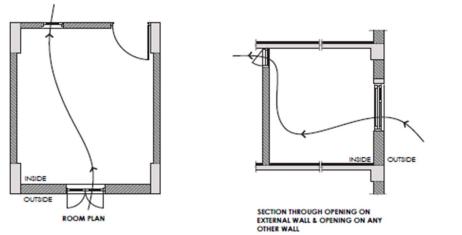

2359 SOURCE: Bureau of Indian Standards (BIS). 2016. National Building Code of India 2016. New Delhi: BIS. 2360

2361 Openable window-to-floor area ratio (WFR_{op}) indicates the potential of using external air for 2362 ventilation. the openable area allows external air, when the ambient temperature is cooler 2363 than the inside air, into the internal spaces, which helps in ventilation, improvement in thermal 2364 comfort, and consequent reduction in cooling energy.

2365

2366 This openable area can be distributed on the external wall in a number of ways. rooms may 2367 have openings on only one external wall or multiple external walls (usually two external walls). 2368 Some guidelines for design of these openings are given below. It is to be noted that internal 2369 doors cannot be relied for enhancing ventilation and are assumed to be closed.⁴⁶

2370 1. Distribution of the openable area on the external walls of a dwelling unit must be done 2371 to maximize cross-ventilation, i.e., the air inlet and outlet openings should be separate and 2372 positioned on different walls in a way that optimizes the air flow path through the space. this 2373 can be done by placing openings on adjacent walls or on opposite walls, where possible 2374 (Figure 6).

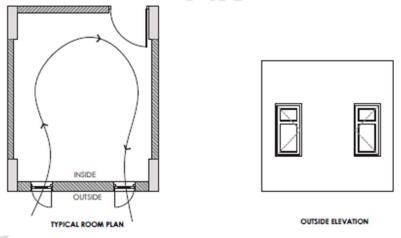


2375 2376

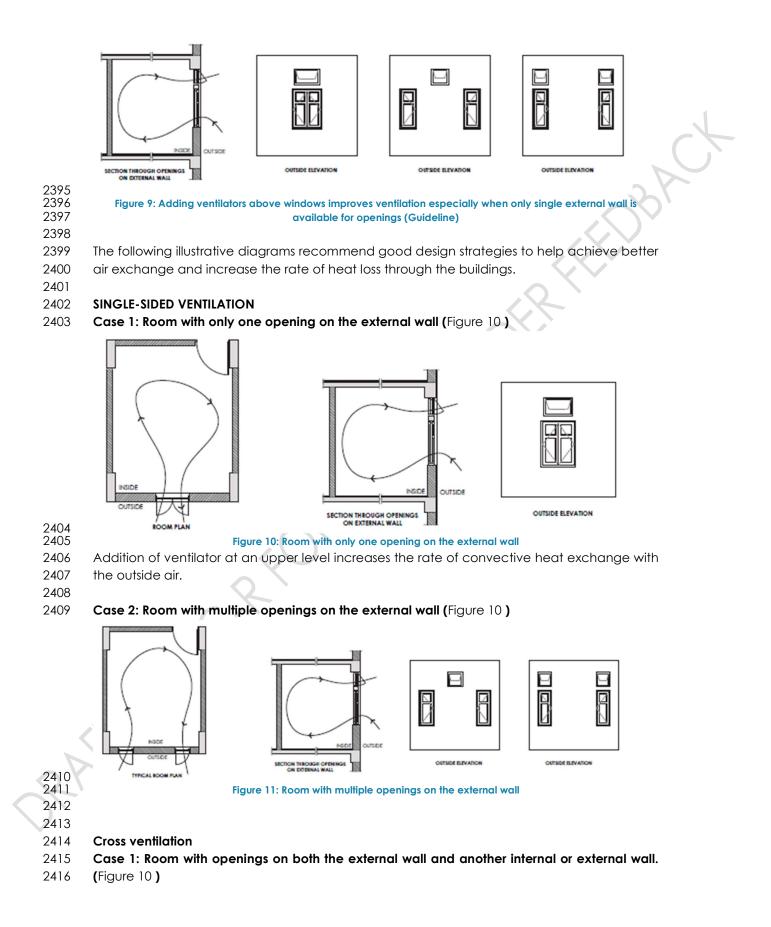
Figure 6: Openings on adjacent or opposite external walls for cross ventilation (Guideline)

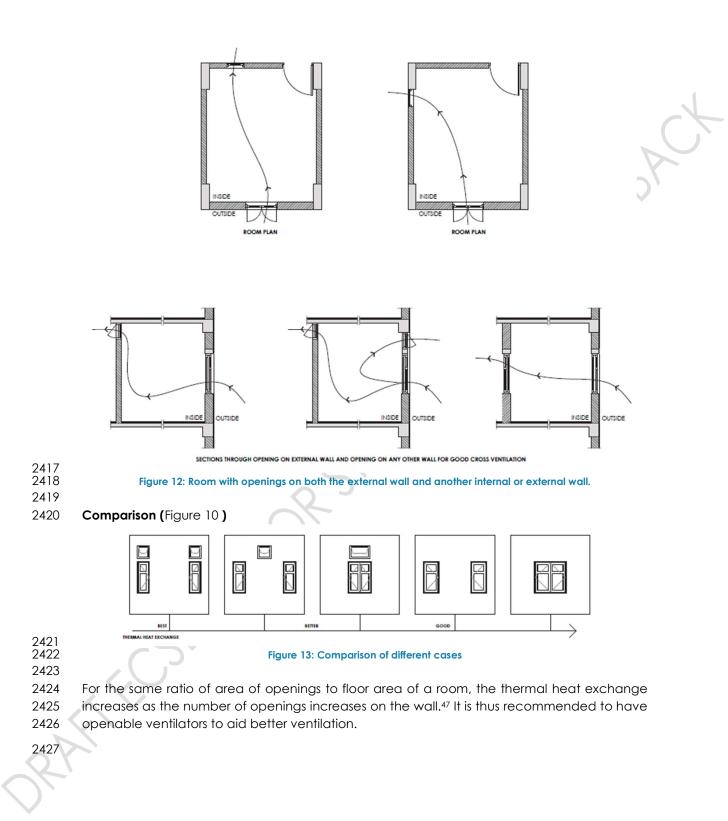
45 Bureau of Indian Standards (BIS). 2016. National Building Code of India 2016. New Delhi: BIS. 46 Heat exchange during night-time in hot/warm climates has greater value for thermal comfort. At this time, it is generally seen now that people keep the doors of their private rooms, i.e., the internal doors, closed.

In rooms that have openable area on only one external wall, cross ventilation can be achieved by having an opening at a higher level on one of the internal walls (Figure 7). this will enhance cross ventilation through the habitable space. this principle can be extended from room to room, for instance, from a bedroom into a living room which is cross-ventilated, thus enhancing cross ventilation through the entire dwelling unit.



3. In rooms with only one external wall, and where cross ventilation is not possible (see
point 2, above), provision of multiple windows on the external wall is preferred to that of a
single window (Figure 8). the farther apart these windows are placed on the wall, the better is
the effect of air movement across the room.


Figure 7: Openings on external wall and internal wall for cross ventilation (Guideline)



2394

Figure 8: Two windows on single external wall (Guideline)

4. Adding a ventilator above the windows on the external wall helps increase the rate of convective heat exchange (Figure 9). this is especially helpful in cases where windows are available on only one external wall and there is no means of cross ventilation.

⁴⁷ This conclusion is generally valid for hot-dry, warm-humid climates. For cold regions, this may vary.

2428 ANNEXURE 8: COOL ROOF AND ROOF GARDENS

2429

A cool roof is one that reflects most of the incident solar radiation and efficiently emits some of the absorbed radiation back into the atmosphere, instead of conducting it to the building below.⁴⁸ The term specifically refers to the outer layer or exterior surface of the roof, which acts as the key reflective surface.⁴⁹ A cool roof minimizes the solar heat gain of a building by first reflecting a considerable amount of incoming radiation and then by quickly re-emitting the absorbed portion. Cool roof encompasses an extensive array of applications including roof coatings, colours, textures, and finishes such as broken China mosaic, tiles, and even metals.

However, cool roofs are not to be seen as an alternative to the thermal transmittance requirement of the roof (U_{roof}) as given in this code. It is encouraged to have any cool roof application over a roof assembly complying with the maximum thermal transmittance value given in the code.

2442

2443 **Defining a cool roof**

2444 The 'coolness' of a roof is influenced by its solar reflectance and thermal emittance.

- Solar reflectance: Solar reflectance is the ratio of solar radiation reflected by a surface to the solar radiation incident upon it. Solar reflectance is measured on a scale of 0 to 1. A reflectance value of 0 indicates that the surface absorbs all incident solar radiation, and a value of 1 denotes a surface that reflects all incident solar radiation. The term 'albedo' is often used inter-changeably with solar reflectance.
- Thermal emittance: Thermal emittance is the relative ability of a material to reradiate absorbed heat as invisible infrared radiation. Emittance, measured from 0 to 1, is defined as the ratio of the radiant flux emitted by a body to that emitted by a black body at the same temperature and under the same conditions.

2454

2457

According to ECBC 2017 cool roof requirement, roofs with slopes less than 20 degrees shall have an initial solar reflectance of at least 0.6 and an initial emittance of 0.9.

The Solar Reflectance Index (SRI) is a term that incorporates both solar reflectance and emittance in a single value and quantifies how hot a surface would get relative to standard black and standard white surfaces. It is the ability of a material to reject solar radiation, as shown by a small temperature rise.50 The SRIs of a standard black surface (having reflectance of 0.05 and emittance of 0.9) and a standard white surface (of reflectance 0.8 and emittance 0.9) are taken as 0 and 100, respectively.

- 2464
- IGBC Green Homes requires a minimum SRI value of 78 for roof slopes with gradient ≤1:6 and
 2466 29 for steeper roof.
- 2467

⁴⁸ Shakti Foundation. 2017. Cool Roofs for Cool Delhi: Design Manual. Available at http://shaktifoundation.in/ wp-content/uploads/2017/06/cool-roofs-manual.pdf (accessed on 1 May 2018)

⁴⁹ ibid

⁵⁰ Bureau of India Standards (BIS). 2016. National Building Code 2016. Part 11. New Delhi: BIS

For more detailed information on cool roof, please refer Cool Roofs for Cool Delhi: DesignManual.51

2471 Roof Gardens

2472 In the case of roofs with roof gardens on earth fill for plantation or lawn, the thermal resistance 2473 of the earth fill can be taken into the calculation of the thermal transmittance (U value) of the 2474 roof. Some of the heat absorbed by the earth fill is also released into the atmosphere due to 2475 evapotranspiration of irrigation water from the roof garden, thus giving additional benefit.

⁵¹ Shakti Foundation. 2017. Cool Roofs for Cool Delhi: Design Manual. Available at http://shaktifoundation.in/wp-content/uploads/2017/06/cool-roofs-manual.pdf (accessed on 01 May 2018)