BEE's National Program on Energy Efficiency and Technology Up-gradation in SMEs

Pali Textile Cluster

Baseline Energy Audit Report G.G.F. Industries (P) Ltd.

Submitted to

Submitted by

InsPIRE Network for Environment

April 2016

contents

List of A	Abbre	biations	i
About t	he Pr	oject	ii
		mmary	
Chapter	r 1: In	troduction	1
1.1	About	The CLUSTER	1
1.2	About	The Unit	1
1.3 I	Produ	ction Process Of Plant	4
1.4 l	Energ	y Audit Methodology	6
1.5 U	Unit P	hotographs	7
Chapter	r 2: Pr	esent Process, Observations and Proposed Technology	8
2.1 I	Install	ation of Float Traps in Jet Dyeing Machine	8
	2.1.1	Present Process	8
-	2.1.2	Observations	8
-	2.1.3	Conclusion	8
	2.1.4	Cost Economics Analysis	9
2.2 I	Install	ation of Float Traps in Zero-Zero Machine	9
	2.2.1	Present Process	9
	2.2.2	Observations	9
-	2.2.3	Conclusion	10
	2.2.4	Cost Economics Analysis	10
2.3	Conde	nsate Recovery System in Jet Drying Machine	11
	2.3.1	Present Process:	11
	2.3.2	Observations	11
	2.3.3	Conclusion	12
	2.3.4	Cost Economics Analysis	
2.4	Conde	nsate Recovery System in Zero-Zero (Felt) Machine	
	2.4.1	Present Process:	
	2.4.2	Observations	13
	2.4.3	Conclusion	14
	2.4.4	Cost Economics Analysis	
2.5 I	Boiler	Feed Water Treatment	
	2.5.1	Present Process:	15
	2.5.2	Observations	16
	2.5.3	Conclusion	
	2.5.4	Cost Economics Analysis	17
2.6	Temp	erature Monitoring and Control in Jigger Machines	
	-	Present Process:	
		Observations	
		Conclusion	
		Cost Economics Analysis	

List of Annexures

Annexure 1: Questionnaire2	0
Annexure 2: Steam loss chart2	9

List of Tables

Table 1: Cost Economic Analysis	iv
Table 1.1: Energy consumption details of G.G.F. Industries (P) Ltd	4
Table 2.1: Cost Economic Analysis of installation of float traps in jet dyeing machine	9
Table 2.2: Cost Economic Analysis of proposed float traps in zero-zero machine	10
Table 2.3: Cost Economic Analysis of proposed condensate recovery system in jet dyeing	
machine	12
Table 2.4: Cost Economic Analysis of proposed condensate recovery system in zero-zero	
machine	15
Table 2.5: Cost Economic Analysis of proposed RO system	17
Table 2.6: Cost Economic Analysis of jigger water temperature monitoring and control syste	m19

List of Figures

Figure 1.1: Monthly variation of production and electricity consumption	2
Figure 1.2: Monthly variation of production and coke cosumption	
Figure 1.3: Variation in specific electrical energy consumption and monthly production	3
Figure 1.4.: Variation in specific fuel consumption (coke) and monthly production	3
Figure 1.5: Production process at G.G.F. Industries (P) Ltd.	5
Figure 1.6: Energy audit methodology	6

LIST OF ABBREBIATIONS

APH	Air-preheater
BEE	Bureau of Energy Efficiency
BD	Blow Down
BOP	Best Operating Practice
BFW	Boiler Feed Water
CETP	Common Effluent Treatment Plant
CSE	Center for Science and Environment
CRS	Condensate Recovery System
FD	Forced Draft
HP	Horse Power
ID	Induced Draft
kcal	Kilo Calories
kg	Kilogram
kVA	Kilo Volt Ampere
kW	Kilo Watts
MSME	Ministry of Micro Small and Medium Enterprises
RTHPA	Rajasthan Textile and Hand Processors Association
RO	Reverse Osmosis
SEC	Specific Energy Consumption
SFC	Specific Fuel Consumption
SPC	Specific Power Consumption
SME	Small and Medium Enterprise
SO	Sulphur Oxide
TDS	Total Dissolved Solids
TFH	Thermic Fluid Heater
VFD	Variable Frequency Drive

About The Project

The project titled "BEE's National Program on Energy Efficiency and Technology Up-gradation in SMEs" supported by Bureau of Energy Efficiency (BEE), Ministry of MSME and Rajasthan Textile and Hand Processors Association (RTHPA) aims to bring down the energy demand of MSME industries located at different clusters around the country. Pali Textile Processing cluster located at Pali, Rajasthan is one such cluster, which has been selected under the program. The project aims to support the MSME units in Pali to implement Energy Efficient Technologies in the SME units.

There are more than 400 Small and Medium Enterprise (SME) textile processing units operating in the various industrial pockets of Pali. The project aims to initially diffuse energy efficient technologies in selected units in the cluster. These units will act as demonstration units for long term and sustainable penetration of energy efficient technologies in the entire cluster. InsPIRE Network for Environment, New Delhi has been appointed as the executing agency to carry out the following activities in the cluster:

- Conducting pre-activity cluster workshop in the cluster.
- Conducting initial walk through audits in 5 representative units of the cluster.
- Identify and propose BEE on energy efficient process technologies, relevant to the cluster, with highest energy saving and replication potential, and their cost benefit analysis.
- Identify local technology/service providers (LSP) for the above technologies in the cluster
- Identify SME units willing to implement and demonstrate the energy efficient technologies
- Assist BEE to enter into a contract with each of the shortlisted SME units to enable implementation and showcasing of Energy Efficient technology.
- Conduct comprehensive Baseline Energy Audits in the shortlisted SME units wherein these technologies can be implemented and document the findings in the form of a report.
- Develop technology specific case studies (Audio-Visual and print) for each technology
- Prepare Best Operating Practices (BOP) document for the top 5 energy using equipment / process in the industry cluster
- Enumeration of common regularly monitorable parameter at the process level which have impact on energy performance, and listing of appropriate instrumentation for the same with options including make, supplier, indicative cost specifications and accuracy of measurements.
- Carry out post implementation energy audit in the implemented units to verify energy savings as a result of EE technology implementation.
- Verify and submit to BEE all the relevant documents of each participating unit owner indicating his complete credentials, proof of purchasing the equipment, evidence of implementation and commissioning of the EE technology in the unit.

As part of the activities conducted under the energy efficiency program in Pali Textile cluster, detailed energy audits in 11 Textile units in Pali was conducted in the month of March and April'2016. This specific audit report details the findings of the energy audit study carried out at G.G.F. Industries (P) Ltd.

Executive Summary

1. Unit Details

Unit Name	:	G.G.F. Industries (P) Ltd.
Address	:	F-119, Mandia Road, Pali, Rajasthan- 306401
Contact Person	:	Mr. Vinod Kumar Sanklecha, Director (Cell no: 9414122936)
Products	:	Cloth processing (cotton, polyester & dyeing)
Production		70,000 to 1,00,000 meters of processed cloth per day
DIC Number		080201200021 Part-I
Bank Details		Bank of Baroda, Suraj Pole, Pali, A/c No.: 09790500015021, IFSC
Bank Details		Code: BARB0PALIXX
TIN / DAN N-	:	TIN: 08033254110
TIN / PAN No.		PAN: AABCG3856E
Contract demand		310 KVA

2. Existing Major Energy Consuming Technology

Jet Dyeing Machine and Zero-Zero Machine

- 5 Nos of Jet Dyeing machine and 2 Nos. of zero-zero machine with no provision for condensate recovery and steam traps
- Each jet machine uses steam at 200 kg/hr and each zero-zero machine uses steam at 200 kg/hr, with a production of 1100-1200 mtrs of processed cloth per batch from jet dyeing machines (2-3 hrs time required for one batch) and 30,000 mtrs of processed cloth per day from zero-zero machine respectively.

Jigger Machine

- A total of 18 numbers jigger machines used for cotton dyeing at elevated temperature (60-80°C). Jiggers are not equipped with temperature monitoring and control system.
- Each jigger machine uses 2000-2500 liters of water in each cycle.

3. Proposed Energy Saving Technologies with Cost Economics

Proposed Energy Saving Measures

- Installation of pneumatically operated float traps in jet dyeing and zero-zer0 machine.
- Installation of RO system for treatment of feed water to boiler.
- > Installation of condensate recovery system for jet dyeing and zero-zero machines.
- Installation of temperature monitoring and control system in jigger machines

Technology	Estimated Energy Savings (%)	Savings (in Rs)	Investment (in Rs)	Simple Payback period (Months)
Float Trap in Jet Dyeing Machine	27	3,23,606	2,75,000	10
Float Trap in Zero-Zero Machine	5	2,58,885	2,00,000	9
Reverse Osmosis (RO) system in steam boiler	3	3,64,110	2,00,000	7
Condensate Recovery System (CRS) in Jet Dyeing Machine	33.33	6,07,260	5,00,000	10
Condensate Recovery System (CRS) in Zero-Zero Machine	13.33	6,44,861	2,50,000	4.65
Temperature Monitoring & Control in Jigger Machines (for 10 Jiggers)	5.7	4,92,252	2,50,000	6
Total				

Table 1: Cost Economic Analysis

Introduction

1.1 ABOUT THE CLUSTER

The Pali textile cluster is one of the biggest SME clusters in Rajasthan having over 350 member industries. The units in the cluster are mainly located in industrial areas namely Industrial Area Phase I & Phase II, Mandia Road Industrial Area and Punayata Industrial Area. Balotra and Bhilwara are other textile clusters in Rajasthan. These clusters also have similar processes and any intervention in Pali would benefit entrepreneurs in these clusters as well. Pollution of nearby river was a significant environmental issue. Center for Science and Environment (CSE) conducted a study to assess the situation behind the environmental issues. The units faced closure for a long time due to legal actions and decided to set up a Common Effluent Treatment Plant (CETP) for redressal the waste water related issues. The CETP is being operational under a trust managed by the entrepreneurs themselves.

Ironically, even though none of the resources required for textile processing is available locally, the textile cluster at Pali has grown despite the odds. The industrial area has no water and all the water required is transported from a distance of over 20 KM. The labour working in the cluster is mostly from outside Pali, at times from as far as Eastern UP and Bihar. Equipment suppliers are all based in Gujarat and Pali does not have enough local service providers or consultants. Even the grey (raw) cloth, dye and chemicals are brought mostly from Maharashtra and Gujarat. Coal or residual pet coke is also not available locally.

Only resource that is available locally is the entrepreneurship of the people, availability of clear sky for over 340 days in a year and good power availability. Presence of a pool of dye masters to process over 400 shades through colour recipe based on experience is another plus for Pali. Initially, Surat used to be the largest processing center for dyeing but a large portion of the job there got outsourced to Pali due to problems like Pollution, Flood, and Plague etc.

1.2 ABOUT THE UNIT

M/s G.G.F. Industries (P) Ltd., Pali, was established in the year 2000 and is engaged in processing of cloth (both cotton and polyester) which includes raw cloth (grey) processing, dyeing and finishing operations. The manufacturing unit is located at F-119, Mandia Road, Pali. The unit operation is overseen by Mr. Vinod Kumar Sanklecha, Director.

The raw material procured by the unit includes grey (raw cloth) purchased from various sources predominantly from Gujarat and Maharashtra. The unit operates for 24 hours per day, presently.

The daily production lies in the range of 70,000 to 85,000 meters of processed cloth per day. The major energy usage in the unit includes wet steam (generated from coke fired boiler) and electricity. The average monthly coke consumption (derived from reported date of last one year) in the unit is 1, 36,500 Kgs. The average monthly electricity consumption (derived from reported date of last one year) is 1, 09,786 kWh. *Figure 1.1* depicts monthly electricity consumption vis-à-vis total monthly production of the unit for last one year. *Figure 1.2* depicts monthly coke consumption vis-à-vis total monthly production for last one year.

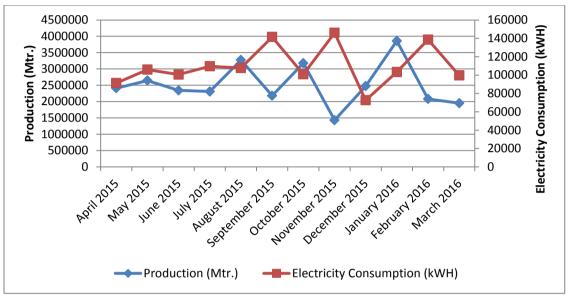


Figure 1.1: Monthly variation of production and electricity consumption

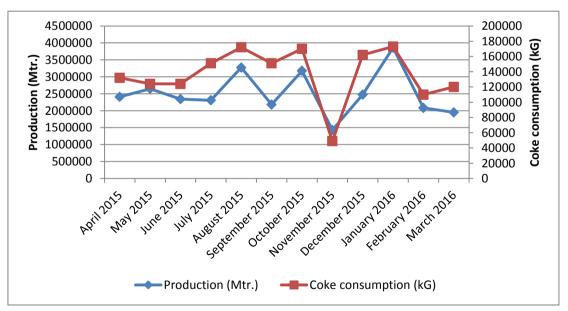


Figure 1.2: Monthly variation of production and coke cosumption

Figure 1.3 and *Figure 1.4* below respectively depicts the variation in specific electrical energy consumption and specific thermal energy consumption vis-à-vis the monthly production for last one year.

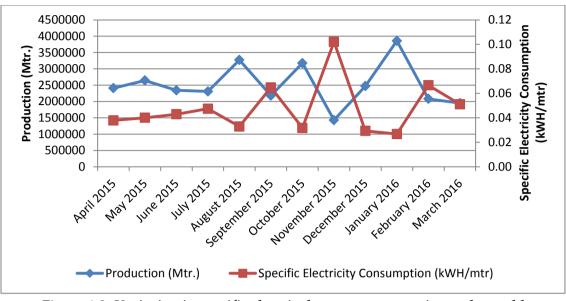


Figure 1.3: Variation in specific electrical energy consumption and monthly production

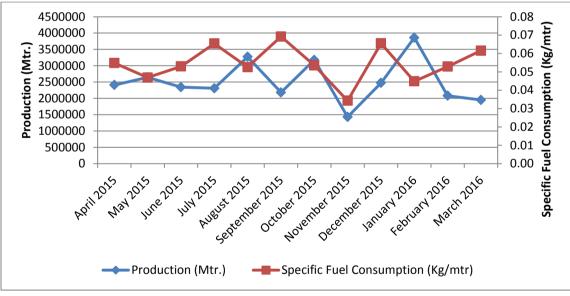


Figure 1.4.: Variation in specific fuel consumption (coke) and monthly production.

According to the assessment of the energy consumption data as reported by the unit (filled in questionnaire attached), the specific thermal energy consumption of the unit varies from 219 kCal/mtr to 837.54 kCal/mtr over a period of one year with an average of 392 kCal/mtr. The specific electrical energy consumption of the unit varies from 0.03 kWh/mtr to 0.10 kWh/mtr over a period of one year with an average of 0.05 kWh/kg. The unit used coke as fuel with a calorific value of 8200 kCal/kg. The total average specific energy consumption (in kcal), based on reported data for one year, is estimated

as **433.18 kCal/mtr** of product. The energy consumption pattern for the unit has been summarized below at *Table 1.1*.:

SN	Parameter	Unit	Value		
1	Name and address of unit	G.G.F. Industries (P) F-119, Mandia Road,	Ltd., Pali, Rajasthan-306401		
2	Contact person	Mr. Vinod Kumar Sar	iklecha, Director		
3	Manufacturing product	Processed cloth (Cott	ton/Polyester/Dyeing)		
4	Daily Production	70,000 to 85,000 mtr	per day		
	Energy utilization				
5	Average monthly electrical energy consumption	kWh	10,97,86		
6	Average monthly fuel (coke) energy consumption	kg	1,36,500		
7	Average specific thermal energy consumption	kCal/mtr	392.06		
8	Specific electrical energy consumption	kWh/mtr	0.05		
9	Specific energy consumption ^{1.2}	kCal/mtr	433.18		
10	Electrical energy cost ³	Rs/mtr	0.31		
11	Thermal energy cost ³	Rs/mtr	0.41		

Table 1.1: Energy consumption details of G.G.F. Industries (P) Ltd.

Note:

¹: Specific gross calorific value of Coke has been considered as 8200 kCal/kg

²: Thermal equivalent for one unit of electricity is 860 kCal/kWh.

³: The unit operates for 25 days a month (1 shift of 12 effective hours per day). Cost of electricity has been taken as Rs 6.50 / kWh Cost of coke has been taken as Rs 7.5 /kg

1.3 PRODUCTION PROCESS OF PLANT

The *Figure 1.5* below shows the typical process employed at processing of textile products at G.G.F. Industries (P) Ltd.:

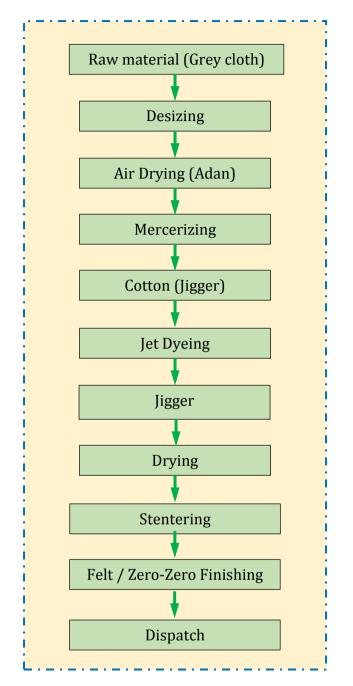


Figure 1.5: Production process at G.G.F. Industries (P) Ltd.

1.4 ENERGY AUDIT METHODOLOGY

The primary objective of the energy audit was to quantify the existing energy consumption pattern and to determine the operating efficiencies of key existing systems. The key points targeted through energy audits were determination of specific energy consumption, various losses, operation practices like production, fuel consumption, steam utilization and losses, process temperatures, electrical energy consumptions etc. Pre – planned methodology was followed to conduct the energy audits. Data collected at all above steps were used to calculate various other operating parameters like material processing rate (mtr/hr), specific electricity consumption (kWh/kg), specific steam utilization (kg/kg), etc. The energy audit methodology is depicted in *Figure 1.6* below:

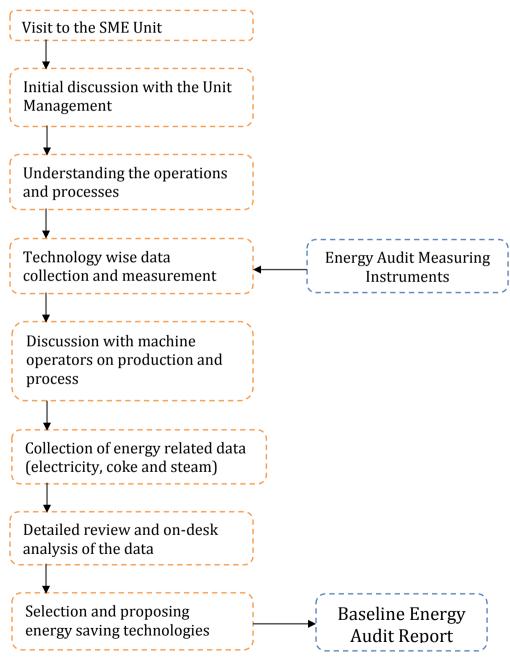


Figure 1.6: Energy audit methodology

1.5 UNIT PHOTOGRAPHS

Jet Dyeing Machines at G.G.F. Industries

Cotton fabric dyeing using Jigger Machines

Boiler heating chamber

Finishing operation using Stenter

Caustic processing unit at G.G.F. Industries

Packaging for dispatch

Present Process, Observations and Proposed Technology

2.1 INSTALLATION OF FLOAT TRAPS IN JET DYEING MACHINE

2.1.1 Present Process

G.G.F. Industries (P) Ltd. has installed 5 nos. of jet dyeing machines having a capacity of 200 kgs each. The unit has a steam boiler of 3 tonnes capacity to generate wet steam required for the process. Steam is used at a working pressure of 4-5 kg/cm² in the jet dyeing machines. In the condensate outlet, 25 NB thermodynamic (TD) traps are installed in 3 nos. of jet dyeing machine. Out of the other 2 jet dyeing machine, no traps have been installed in one of the machine whereas float trap installed in the other machine is not functioning properly.

2.1.2 Observations

Thermodynamic traps work on the difference in dynamic response to velocity change in the flow of compressible and incompressible fluids. As steam enters, static pressure above the disk forces the disk against the valve seat. The static pressure over a large area overcomes the high inlet pressure of the steam. As the steam starts to condense, the pressure against the disk lessens and the trap cycles. This essentially makes a TD trap a "time cycle" device: it will open even if there is only steam present, this can cause premature wear. If non-condensable gas is trapped on top of the disc, it can cause the trap to be locked shut. However, the efficiency of TD traps is low in comparative to float traps. In the current process, it was observed that the TD traps are not being able to remove condensate properly. As a result, the operator by-pass the valve to remove the condensate in the heating cycle. Thus, a significant amount of steam is lost in each heating cycle.

2.1.3 Conclusion

As per the study conducted in the unit, it is suggested to install pneumatically operated float traps in steam unit of jet dyeing machine in place of TD traps. These float traps will be able to filter out condensate in the machine exit and allow steam to pass through the line. The amount of steam being discharged along with the condensate can be saved in the process.

The installation of the float-traps in the steam utilizing units will lead to following benefits:

- → Higher capacity turndown trap
- → Complete Space Optimization Area required for installation is less
- ➡ No welding required
- ➡ No Inline leakages
- ➡ Lesser Radiation losses
- → Reduced transportation costs

2.1.4 Cost Economics Analysis

The section below provides a cost benefit analysis for installation of float traps in the existing steam line of the jet dyeing machine in place of the existing TD traps:

SN	Parameter	Unit	Value
1	Bypass Valve size	mm	25
2	Percentage opening of bypass valve	%	20
3	Orifice size of opened valve	mm	5
4	Operating pressure	kg/cm ²	4
5	Steam leakage per batch per jet dyeing machine (considering 45 min heating cycle/jet dyeing	kg/batch/jet dyeing m/c	30
6	No. of batches	no.	5
7	Total steam leakage /day/jet dyeing	kg/day/jet dyeing m/c	150
8	No. of jet dyeing machine	no.	5
9	Quantity of steam saved	kg/day	750
10	Energy saved	%	27
11	Quantity of fuel saved daily	kg/day	131
12	Annual fuel saving	kg/yr	43148
13	Annual cost saving	Rs/yr	323606
14	Investment	Rs	275000
15	Pay back	months	10

Table 2.1: Cost Economic Analysis of installation of float traps in jet dyeing machine

* Cost of fuel taken as Rs 7.5/kg

As per the detailed calculations done, it is proposed to install float traps in place of existing thermodynamic traps in the steam line of the jet dyeing machine. The estimated fuel saving with the installation is 43,148 kgs annually which can save an amount of Rs. 3.23,606 per year. Thus the cost of the 5 nos. of float traps (estimated to be Rs. 2,75,000) can be recouped in less than 10 months.

2.2 INSTALLATION OF FLOAT TRAPS IN ZERO-ZERO MACHINE

2.2.1 Present Process

G.G.F. Industries (P) Ltd. has installed 2 nos. of zero-zero machines having a capacity of 200 kgs each. The unit has a steam boiler of 3 tonnes capacity to generate wet steam required for the process. Steam is used at a working pressure of 4-5 kg/cm2 in the jet dyeing machines. In the condensate outlet, thermodynamic (TD) traps are installed in blanket cylinder and rubber cylinder.

2.2.2 Observations

Thermodynamic traps work on the difference in dynamic response to velocity change in the flow of compressible and incompressible fluids. As steam enters, static pressure above the disk forces the disk against the valve seat. The static pressure over a large area overcomes the high inlet pressure of the steam. As the steam starts to condense, the pressure against the disk lessens and the trap cycles. This essentially makes a TD trap a

"time cycle" device: it will open even if there is only steam present, this can cause premature wear. If non-condensable gas is trapped on top of the disc, it can cause the trap to be locked shut. However, the efficiency of TD traps is low in comparative to float traps. In the current process, it was observed that the TD traps are not being able to remove condensate properly. As a result, the operator by-pass the valve to remove the condensate in the heating cycle. Thus, a significant amount of steam is lost in each heating cycle.

2.2.3 Conclusion

As per the study conducted in the unit, it is suggested to install pneumatically operated float traps in steam unit of zero-zero machine in place of TD traps. These float traps will be able to filter out condensate in the machine exit and allow steam to pass through the line. The amount of steam being discharged along with the condensate can be saved in the process.

The installation of the float-traps in the steam utilizing units will lead to following benefits:

- → Higher capacity turndown trap
- → Complete Space Optimization Area required for installation is less
- → No welding required
- → No Inline leakages
- → Lesser Radiation losses
- → Reduced transportation costs

2.2.4 Cost Economics Analysis

The section below provides a cost benefit analysis for installation of float traps in the existing steam line of the zero-zero machine in place of the existing TD traps:

SN	Parameter	Unit	Value
1	Bypass Valve size	mm	25
2	Percentage opening of bypass valve	%	15
3	Orifice size of opened valve	mm	3
4	Operating pressure	kg/cm ²	4
5	Steam loss through opened by pass valve	kg/hr	10
6	Total steam leakage /day (considering 50% live steam leakage loss)	kg/day	120
7	No. of cylinders in zero- zero machine	no.	4
8	No. of zero-zero machine	no.	2
9	Quantity of steam saved (considering 4 cylinders of zero-zero machine and 1 gotta machine)	kg/day	600
10	Energy saved	%	5
11	Quantity of fuel saved daily	kg/day	105
12	Annual fuel saving	kg/yr	34518
13	Annual cost saving	Rs/yr	258885
14	Investment	Rs	200000
15	Pay back	months	9

Table 2.2: Cost Economic Analysis of proposed float traps in zero-zero machine

* Cost of fuel taken as Rs 7500/MT

As per the detailed calculations done, it is proposed to install float traps in place of existing thermodynamic traps in the steam line of the zero-zero machine. The estimated fuel saving with the installation is 34,518 kgs annually which can save an amount of Rs. 2, 58,885 per year. Thus the cost of the float traps (estimated to be Rs. 2, 00,000) can be recouped in less than 10 months.

2.3 CONDENSATE RECOVERY SYSTEM IN JET DRYING MACHINE

2.3.1 Present Process:

G.G.F. Industries (P) Ltd. has installed 5 numbers of jet dyeing machines. These machines are used for pressurized dyeing (Colouring) process, used mainly for polyester based fabric. Steam at a working pressure of 4-5 kg/cm² along with water is used in the jet dyeing process. A significant amount of steam is lost during the heating operation of the jet dyeing process, as the portion of the latent heat is transferred to the equipment line resulting in condensate formation. Also, a significant amount of steam is transformed to condensate during the cooling cycle of the jet dyeing process. In addition to these, heat available in exit water generated during the process is wasted during the water recycling process. The unit has 5 numbers of jet dyeing machines, each having a capacity to use steam at 200 kg/hour. The jet dyeing operation is done in 5 batches in a day.

2.3.2 Observations

The jet dyeing process is a batch dyeing process in which dyeing is accomplished in a close tabular system, basically composed of an impeller pump and a shallow dye bath. The fabric to be dyed is loosely collapsed in the form of a rope, and tied into a loop. The impeller pump supplies a jet of dye solution, propelled by water which transports the fabric into the dyeing system, surrounded by dye liquor, under

optimum conditions. Turbulence created by the jet aids in dye penetration and prevents the fabric from touching from touching the walls of the tube, thus minimizing mechanical impact in the fabric. Steam is supplied during the heating process for better heat penetration and to create optimum dyeing conditions. Each operational cycle lasts for 2-3 hours which includes heating process, dyeing process and cooling operations. The cloths are dyed in pressurized conditions with the help of steam and water. A significant portion of steam is converted into water droplets due to condensation. When steam condenses, at the threshold or instant of phase change, the condensate temperature is the same as steam because only the latent heat has been lost, and the full amount of sensible heat remains. This condition is known as "Saturated Water". Not wasting, but rather recovering and reusing as much of this sensible heat as possible through installation of condensate recovery system.

2.3.3 Conclusion

In order to recover heat lost through condensate, it is proposed to install a condensate recovery system in the jet dyeing machines. Condensate recovery is a process to reuse the water and sensible heat contained in the discharged condensate. Recovering condensate instead of throwing it away can lead to significant savings of energy, chemical treatment and make-up water. Condensate can be reused in many different ways, for example:

- As heated feed water, by sending hot condensate back to the boiler's deaerator
- As pre-heat, for any applicable heating system
- As steam, by reusing flash steam
- As hot water, for cleaning equipment or other cleaning applications

The system includes a positive displacement condensate pump which can recover (suck) hot condensate and flash steam from the steam pipeline and feed the same into the boiler feed water tank. The pump may also be equipped with an in-built receiver for condensate which eliminates the need for a separate storage tank. The installation of the system will allow 100% recovery of condensate formed during the jet dyeing process. The technology can be suitably modified for mechanical or sensor based control.

Benefits of the condensate recovery system are:

- Reduced fuel cost
- Lower water related expenses
- Positive impact on safety and environment

2.3.4 Cost Economics Analysis

The section below provides cost benefit analysis for the installation of condensate recovery system (CRS) in the jet dyeing machine.

SN.	Particular	Unit	Value
1	No. of Jet Dyeing Machine	no	5
2	Steam Consumption of Jet Dyeing M/c per hr	kg/hr	200
3	No.of Batches per day	no	5
4	Condensate recovery potential (considering heating cycle of 45 mins)	kg/day	3750
5	operating days	days	330
6	Sensible heat @ 4kg/cm ²	kcal/kg	144
7	Sensible heat @ 0.5 kg/cm ²	kcal/kg	111
8	Latent heat @ 0.5 kg/cm ²	kcal/kg	532
9	Flash steam quantity saved	kg/day	233
10	Savings with flash stem (A)	Rs	76762
11	Balance condensate stem	kg/day	3517
12	Temperature of condensate	°C	95
13	Make up water temperature	°C	35

Table 2.3: Cost Economic Analysis of proposed condensate recovery system in jet dyeing
machine

SN.	Particular	Unit	Value
14	Gain in enthalpy	kcal/d	211043
15	GCV of fuel	kCal/kg	8200
16	Cost of fuel	Rs/kg	7.5
17	Savings with condensate stem	Rs	159248
18	Total quantity of RO water generated per day	Ltr/day	3750
19	Cost of RO water per liter	Rs	0.3
20	Savings from Ro water per year (B)	Rs	371250
21	Total Saving (A+B)	Rs	607260
22	Cost of condensate recovery system	Rs	500000
23	Simple pay back	months	10
24	Fuel saving	kg/hr	147
25	Energy saving	%	33.33

*Cost of fuel taken as Rs 7.5/kg

The proposed condensate recovery system in jet dyeing machine will lead to an annual monetary savings of Rs 6, 07,260 with an investment of Rs 5, 00,000 (estimated). Thus, the investment can be recouped in less than a year.

2.4 CONDENSATE RECOVERY SYSTEM IN ZERO-ZERO (FELT) MACHINE

2.4.1 Present Process:

G.G.F. Industries (P) Ltd. has installed 2 numbers of zero-zero machines. These machines are used for finishing operations wherein the fabric is rotated in circular rubber drum with blanket of steam rotating around it. Steam at a working pressure of 4-5 kg/cm² is used in the process. A significant amount of steam is lost during the operation, as the portion of the latent heat is transferred to the equipment line resulting in condensate formation. The unit has 2 number of zero-zero (felt) machines, each having a capacity to use steam at 200 kg/hour. Around 30,000 meters of cloth is processed in zero-zero machine every day.

2.4.2 Observations

The felting or zero-zero process is carried through controlled compression shrinkage or pre-shrinking of the fabric by passing the fabric into rubber unit. This process forces the yarns closer together and the fabric becomes thicker and heavier and the dimensional stability of the fabric improves. This process is also called "sanforization".

In the zero-zero finishing operation, fabric is passed between hot cylinder with steam

in the inner line and endless rubber, heating of the cylinder takes place by steaming arrangements. Pressure is applied on the fabric between the rubber and cylinder by pressure roll. During this above operation shrinkage takes place on the fabric. During

drying of fabric in the felt unit, the moisture is uniformly absorbed from the fabric by the felt blanket. And the shrinkage of the fabric is set. The unit also has a cooling cylinder which is used to further cool the fabric to normal temperature.

A significant portion of steam is converted into water droplets due to condensation in the zero-zero and felt operations. When steam condenses, at the threshold or instant of phase change, the condensate temperature is the same as steam because only the latent heat has been lost, and the full amount of sensible heat remains. This condition is known as "Saturated Water". Not wasting, but rather recovering and reusing as much of this sensible heat as possible through installation of condensate recovery system.

2.4.3 Conclusion

In order to recover heat lost through condensate, it is proposed to install a condensate recovery system in the zero-zero machines. Condensate recovery is a process to reuse the water and sensible heat contained in the discharged condensate. Recovering condensate instead of throwing it away can lead to significant savings of energy, chemical treatment and make-up water. Condensate can be reused in many different ways, for example:

- As heated feed water, by sending hot condensate back to the boiler's deaerator
- As pre-heat, for any applicable heating system
- As steam, by reusing flash steam
- As hot water, for cleaning equipment or other cleaning applications

The system includes a positive displacement condensate pump which can recover (suck) hot condensate and flash steam from the steam pipeline and feed the same into the boiler feed water tank. The pump may also be equipped with an in-built receiver for condensate which eliminates the need for a separate storage tank. The installation of the system will allow 100% recovery of condensate formed during the jet dyeing process. The technology can be suitably modified for mechanical or sensor based control.

Benefits of the condensate recovery system are:

- Reduced fuel cost
- Lower water related expenses
- Positive impact on safety and environment

2.4.4 Cost Economics Analysis

The section below provides cost benefit analysis for the installation of condensate recovery system in the zero-zero machine.

	тистте		
SN	Particular	Unit	Value
1	No. of zero-zero machine	No	2
2	Steam consumption for zero- zero machine	kg/hr	200
3	Operating hours per day	Hrs.	12
4	Condensate recovery potential	kg/day	4800
5	operating days	days	300
6	Sensible heat @ 4kg/cm ²	kcal/kg	144
7	Sensible heat @ 0.5 kg/cm ²	kcal/kg	111
8	Latent heat @ 0.5 kg/cm ²	kcal/kg	532
9	Flash steam quantity saved	kg/day	298
10	Savings with flash stem (A)	Rs	89323
11	Balance condensate stem	kg/day	4502
12	Temperature of condensate	°C	95
13	Inlet temperature	°C	35
14	Gain in enthalpy	kcal/d	270135
15	GCV of fuel	kCal/kg	8200
16	Cost of fuel	Rs/kg	7.5
17	Savings with condensate stem	Rs	123538
18	Total quantity of RO water generated per day	Ltr/day	4800
19	Cost of RO water per liter	Rs	0.30
20	Savings from Ro water per year (B)	Rs	432000
21	Total Saving (A +B)	Rs	644861
22	Cost of condensate recovery system	Rs	250000
23	Simple pay back	months	4.65
24	Fuel saving	kg/hr	59
25	Energy saving	%	13.33

 Table 2.4: Cost Economic Analysis of proposed condensate recovery system in zero-zero

 machine

*Cost of fuel taken as Rs 7.5/kg

The proposed condensate recovery system in zero-zero machine will lead to an annual monetary savings of Rs 6, 44,861 with an investment of Rs 2, 50,000 (estimated). Thus, the investment can be recouped in 5 months.

2.5 BOILER FEED WATER TREATMENT

2.5.1 Present Process:

G.G.F. Industries (P) Ltd. has installed 1 number of steam boiler of 3 tonnes capacity. Since, Pali cluster do not have any internal source of water, water to be used in the boiler is sourced from nearby areas. Presently, the unit is not applying any kind of process treatment for the feed water to the boiler. The total dissolved solids (TDS) content in the boiler feed water intends to surplus the maximum permissible

TDS of the boiler due to repeated use of water. This leads to frequent boiler blow-down operation of the boiler, where a certain amount of water is blown off and is automatically replaced by feed water thus maintaining the optimum level of total dissolved solids (TDS) in the boiler water. In G.G.F. Industries, boiler blow-down is carried out at a frequency of 4 hours every day. The frequency of blow-down is predominantly dependent of the high level of TDS in the boiler feed water. During each Blow-Down (BD) operation, a large quantity of energy in the form of steam is wasted into the atmosphere.

2.5.2 Observations

The TDS level of the feed water used for the steam boiler at G.G.F. Industries (P) Ltd. was reported to be 500 ppm, which when continuously used intends to surplus the permissible TDS level which is around 2000-3000 ppm. When feed water enters the boiler, the elevated temperature and pressure cause the components of water to behave differently. Under heat and pressure, most of the soluble components in the feed water come out of the solution as particulate solids, sometime in crystalized forms and other times as amorphous particles. When solubility of a specific component in water is exceeded, scale or deposits develop. Deposit in boilers may result from hardness contamination of feed water and corrosion products from the condensate and feed water system. Deposits and corrosion result in localized heating, efficiency losses and may ultimately result in failure of boiler tube and inability to produce steam. In order to avoid deposits or scale formation in the boiler lining, blow-down operation is carried out in the boiler. The process of blow-down involves blowing off a portion of the water and replacing it with fresh feed water.

In case of G.G.F. Industries, intermittent blow-down operation is practiced at frequency of 4 hours. The blow-down is done with the use of a valve fitted to discharge pipe at the lowest point of the boiler. The blow-down process is carried out for a period of 1-2 minutes. Approximately 1500-1700 liters of water is lost every day in the blow-down operation.

In order to reduce the blow-down operation in the boiler and to maintain the permissible level of TDS, it is suggested for pre-treatment of boiler feed water. This external treatment of boiler feed water can be done in a number of ways. One of the most feasible options is the 'Reverse Osmosis' processes.

2.5.3 Conclusion

In order to maintain the TDS of boiler feed water close to the permissible range, it is suggested to install a revise osmosis (RO) plant in the unit. When solution of differing concentration are separated by a semi-permissible membrane, water from less concentrated solution passes through the membrane to dilute the liquid of high concentration, which is called osmosis. If the solution of high concentration is pressurized, the process is reversed and water from the solution of high concentration flows to the weaker solution. This is known as reverse osmosis. The quality of water produced depends upon the concentration of the solution on the high-pressure side and

pressure differential across the membrane. The process is suitable for waters with high TDS.

Installation of the RO system of required capacity can lead to considerable reduction in boiler blow-down, thus leading to a saving in steam. The membrane for RO system can be suitably selected based on the TDS level of the unit.

Benefits of the installation of the RO system are:

- Lower boiler blow-down
- Less make up water consumption
- Steam saving as a result of reduced blow down
- Reduced maintenance downtime
- Increased boiler life
- Reduced fuel cost

2.5.4 Cost Economics Analysis

The section below provides cost benefit analysis for the installation of RO system in the boiler feed water line:

SN	Parameter	Unit	Value
1	Quantity of steam generated per hour	kg/hr	3000
2	Quantity of fuel used per hour	kg/hr	440
3	Quantity of fuel used to generate 1 kg of steam	kg/kg	0.147
4	Without RO		
5	Frequency of blow down per month	no.	75
6	No. of blow downs in a year	no.	900
7	Steam lost in each blow down	kg	533
8	Steam lost in year	kg	480000
9	Fuel used to generate lost steam	kg	70400
10	With RO		
11	Frequency of blow down	no.	25
12	No. of blow downs in a year	no.	300
13	Steam lost in each blow down	kg	533
14	Steam lost in year	kg	159900
15	Fuel used to generate lost steam	kg	23452
16	Annual saving in fuel	kg	46948
17	Percentage saving in fuel consumption	%	3.0
18	Annual cost saving in fuel	Rs	352110
19	Annual cost saving in terms of makeup water and boiler maintenance	Rs	12000
20	Annual cost savings	Rs	364110
21	Equipment cost	Rs	200000
22	Pay back	months	7

Table 2.5: Cost Economic Analysis of proposed RO system

*Cost of fuel taken as Rs 7.5/kg

The proposed reverse osmosis system will lead to an annual fuel savings of 46,948 kgs of coal which is equivalent to Rs 3, 52,110 annually. Thus an estimated investment of Rs 2, 00,000 for the system can be recouped in less than a year.

2.6 TEMPERATURE MONITORING AND CONTROL IN JIGGER MACHINES

2.6.1 Present Process

G.G.F. Industries (P) Ltd. has installed a total of 18 Jigger machines. These jigger machines are used for dyeing of cotton cloth at elevated temperature of 60-80°C depending on the type of fabric and the dye used. Steam is fed into the system for the required amount of elevated temperature. Once the dyeing process is over, the hot water is drained out of the factory. The temperature requirement for water is different for

different grades of dyes and quality of fabric. However, no temperature monitoring system has been installed in the jigger machines. Monitoring and control of temperature of water is done purely based on manual interference.

2.6.2 Observations

Dyeing of cotton fabric is done with the help of a jigger machine. In this process the fabric is rotated in a shallow dip containing hot water. The temperature of the water depends on the type of dyeing agent and the quality of the fabric. Typically a temperature range between 60°C to 80°C is adopted based on different fabric quality and dye. Steam is used to bring amount the required temperature in the process. In case of G.G.F. Industries, no temperature monitors is being installed in any of the jiggers. The monitoring of water temperature and its control is purely done by manual interference. A study of the jigger water temperature showed off-shooting of temperature at certain places. Thus, a significant amount of energy in the form of steam required to heat water is being lost due to the absence of temperature monitoring and control system. It is suggested for installation of sensor based automatic temperature control and monitoring system in the jiggers.

2.6.3 Conclusion

In order to maintain the correct temperature profile in the jigger water, it is suggested to install a sensor based temperature monitoring and control system. This system can be used to monitor the temperature level of water in the jiggers and control the flow of steam by a pneumatically operated valve. This will be lead to optimum utilization of steam in the jiggers thus leading to a substantial energy savings.

Benefits of the installation of the temperature monitoring and control system in Jiggers machines are:

- Precision temperature control
- Reduced energy consumption
- Better quality of production
- Savings in terms of feed water to jiggers.

2.6.4 Cost Economics Analysis

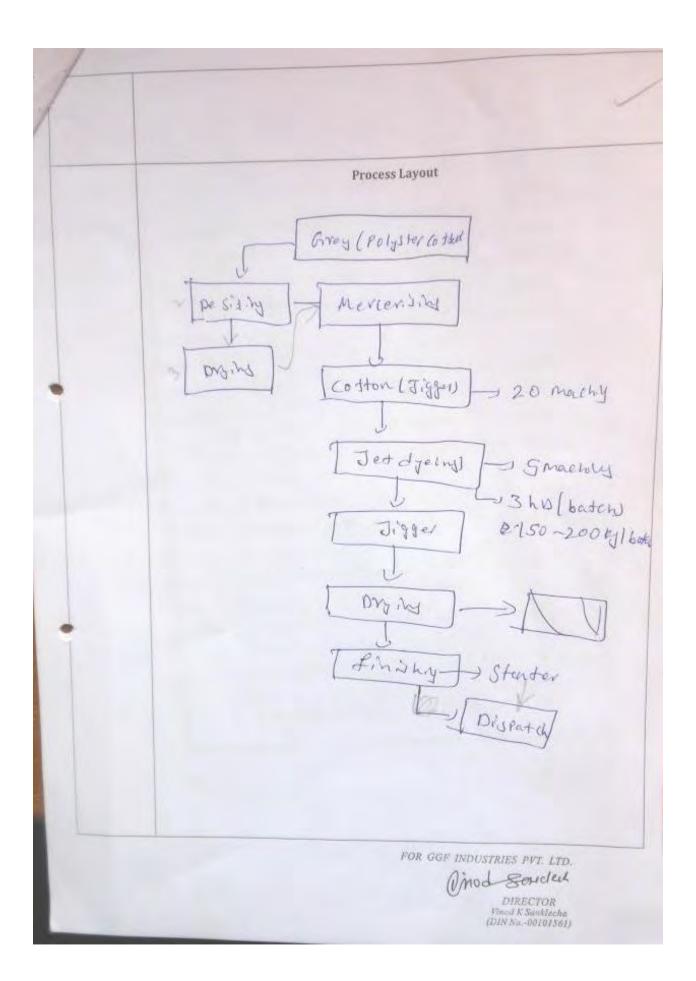
The section below provides cost benefit analysis for the installation of temperature monitoring and control system in jiggers. For calculation purpose, it has been assumed that the system is installed in 10 nos. of jiggers.

Table 2.6: Cost Economic Analysis of jigger water temperature monitoring and control system

SN	Particulars	Units	Value
1	Temperature observed in Jigger	°C	95
2	Temperature to be maintained	°C	80
3	Machine Capacity	kg	200
4	Steam pressure	kg/cm ²	4
5	Steam Enthalpy @ 4 Kg /cm ² pressure	kCal/kg	657
6	Liquor Ratio		0
7	Water Capacity	Kg	400
8	Specific heat coefficient (Cp)-water	kCal/kg ⁰ C	1
9	Specific heat coefficient (Cp)-fabric	kCal/kg ⁰ C	0.5
10	No. of batches per day	nos.	2
11	Saving of steam per batch	kg / hr	11
12	Saving of steam per day (considering 10 hrs. heating period in 2 batch)	kg/day	114
13	Savings of steam per annum	kgs/annum	37648
14	Annual fuel savings	kgs	6563
15	Annual monetary savings	Rs	49225
16	Investment per jigger	Rs	25000
17	General payback period	Months	6
18	Annual fuel savings for 10 jiggers	Kgs	65634
19	Annual monetary savings for 10 jiggers	Rs	492252
20	Investment for 10 jiggers	Rs	250000
21	Pay-back	Months	6
22	Energy savings	%	5.70

*Cost of fuel taken as Rs 7.5/kg

The proposed temperature monitoring and control system (estimated for 10 jigger machines) will lead to an annual fuel saving of 65,634 kgs of coal which means a monetary saving of Rs 4, 92,252. Thus the estimated investment of Rs 2, 50,000 can be recouped in around 6 months period.


Questionnaire

	iency in SMEs - Pali Textil	e Cluster"			
Name of the MSME unit			120) .		
Address:	G.G.F. INDust F-119, Mondia	Rand P	Di Data	125 414	
Ph. No:	F =11 - I mamaria	NGHR IS	an ange		
Name of the respondent	Vinod Kuumare	Calmy Do	cha		
Designation:	Divector		enes_		
Mobile No. / Email id					
Unit details	9414122936				
Year of Establishment	2.000				
Type of Products		Aller on these	4.0		
Installed Capacity	Cotters 101-000	Ter Dyree	1'		
Operating hrs per day	Zichva				
Connected Load	Linna				
(kVA or kW please specify)	BIDKVA				
Supply Voltage (Volt)	11 Ku/ When				
Duration of electricity supply	24 kus -				
Annual Energy Consumption/ Production	Financial Year (April to March		2014-15	2015-1	
	Coke consumed (kg				
	Biomass Briquettes Wood				
	Cost of coke (in Rs.				
	Electrical units				
	consumed (In kWh Electricity charges (ir		-		
	Rs.				
	LDO/HSD/ FC				
	consumption (L Fuel Cost (in Rs.		-		
	Production (Kg		1,55,000		
Source and Calorific Value of Fuels:	Fuel	Source		ific Value kCal)	
	Coke (Kg)		- 3	200	
	Biomass Briquettes				

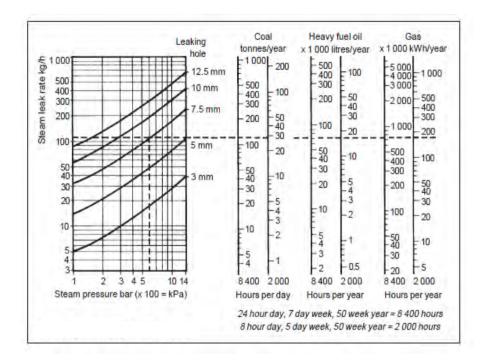
1			Wood HSD (L) LDO (L)			
			FO (L)			
			Electricity (kWh)			
		Commution	and Production	Data		
Month	Production (Kg)	Coke consumption (Kg)	Biomass	Electricity consumption (kWH)	HSD/LDO /FO (L)	Any other fuel (specify units)
April'15	18525	132.		912.54		
May'15	20352	124.		105672		
June'15	10014	124,		10572		_
July'15	17751	151		109532-		
August'15	25182	172		107754		
September'15	16730	121		141492		_
October'15	24433	170		100816	-	-
November'15	10998	49.		146032		
December'15	19030	162		22.572		
January'16	29687	173		10.8372		-
February'15	16012	110		138620		_
March'1\$	15000	120		99527		
,						
Cost variable	s per Kg of		Cost Variable		Cost/kg of p	
Production			Electricity Cost		6.7.5	0 49 1000
			Coke Cost		Ro 6.50	0 kg 1 muh / ng + fragli
			Fuel Cost (LDO	/HSD/FO) etc.		f.
			Labour Cost			/
			Material Cost			1
			Other Cost		1	/
				FOR GGF INDU	Sevele	et

			lustrice (P) Li	and the second sec
		MACHINENAME	motor HP.	
	1	Tet Dyeing	10 HP	01
			1 HPX2	62
	2.	Jut Dyeing	10 HP	01
-			12 HPX2	02
	3	JET Pyeing	10 HP	01
			1 HPaz	02
	4	Jet Dyeiny	10 418	01
	_	-	3 HPX2	22
-	5	Jet Byenny	10 HP	01
	-		12 H8 X2	02 =
		Jigger Holto 6	5 HPX6	06
	-	519902-MOG to 18	75 HP X 12	12
		Hydro Section 1	2040	01
		4.	3 HP	01
		Hydro Section 2	2571P	01
			OSTHP	0]
-	_	HOTWATES PUMP	03 HP	a)
		WASHING Mech.	5HPX2-	02

		chesanate	
Stanter Hi Fech Meeline	20/11	01	
	IO HP	0/	
	S-HP	02	
	3 40	02	
	248	0.1	
	1.5 HP	02	
	7.5"HP	10	
	STO INAT DC	02	
HET Stantes HARsish Mech,	20 HP	01	
	10 HP	01	
	5-HP	03	
	3 HP	02.	
	IIS-HP	01	
	IHP	02	
	7.5-HP	12	
	SZOLAANT	02 02	
STarr motor	5-HP	02	

	motorne Q	classmate 9 Data Proge TE Val modes
STEEm Boiler motor	248	04
	7.5HP	01
	15HP	01
	SZOWAIT-	02
madepump.	SRP	01
	2 4 19	01
DecoDaise matchine	SHP	02
	\$ HP	02
	3 MP	0
		4.
Singing mechine	10 HP	01
-	5-HP	01
	3 HP	01
	2 HP	02

		moderHR	elassanate 3
13	2000 2000 mechine 2	10 HP	01
-		20 118	01
-		10 HP	@/
-		500 14141	-01
718	Comfersion motor	10 2	
-	1+2 Compension	10 HP	02
	Gren Set Des. gump		
-	modor	stro WATT	01
	H. C. L. Pump motor	1 HP .	01
	Thannie Boilar motor	IS-HP	01
-		2 HP	01
+		ec HP	01
-		STO WAN	01
-		3 HP	01
-		25-HP	0(
	motor single ph-	02HP	01



_	machine	motortip	Pena 10/HUMotor
-	Open stanter with copoto	ISTAP	0
-	Flate	10 # 8	01
		3 H P	02
	MAS Rise mechine	520 WAH	01
-		548	0.5
	MAS Rise mechine	5 H P	0/
_		3 HP	02
_	-	1.5HP	61
_		2 HP	01
_		1 HP	01
_			٠.
2	WATER Jank Pump	SHP	01
	Sammasiwell	3 HP	03
	Zero zero mechine 1	10 HP	01
		15-HP	01
_		10 HPDC	01
-		ot HP	02.
_		570 WAT	01
		300 WAT	01

Nigon Leve 0291-27423 Dist Level	16			TCSD-I MICR CO SBBJ / Mob. No	1 FAL	1	- 2821		ection centre of		/	1. ER 2. M 3. C R	なりの下
Billing Month B	Bill No. Ac	count Numb	er	PAN Nume	er	Bi	I Issue Date	C	Due Date of Payment		Con	nsumer's I	4
MAR-15	PC 28	2100990	226	AABCG385	56E (09/1	03/2015	23/0	3/2015	M/E	5 GAI	NUHAR I	2
Voltage of Melecing on Supply HT/LT Side	Sectioned Load (HP/KW)		Deman VA)	d 75% of C Dema		F	eeder Code		CTPT Set No.		STUE	fr b	2
	500.00		0.00	232.5	50		0.00 21	3301	02		-1 .	4 - 24	
A) METER READIN	IG & CONSU	MPTION :	INDU	CODE: 0	21	Sea	ason Fre	17 0	101.0		Rei	ading Date	
Meter No.	Nature of Meter 2	Type of Meter 3		Present Read	ng		Last Readin	g	Defferen (4-5) 6	ce.	M	Eaclor Factor	
DE13855	KNH KVAH KVA	нт НТ НТ		47274.00 72081.00 74.60	2		917067.00 140685.00 0.00	5	30207.00 31396.00 74.60	2	4.0	00/1.00 00/1.00 00/1.00	
Gross Co	onsumption	Including	-	_	_			-		-			
	formation lo			Billing	Av		KWH Cons. fo	r K	WH Cons. for		Test	Report	
	KVAH	KVA	2	Demand	P.F	1	DS use		NDS use		6	Inits	
120828.00	125884.	00 29	8.40	278.4	00.	963	2 0.	0	0.0		0.0	0,1	
120828.00 (1) Energy Char @ Per KV Rs6.50	125884. ge (2) Fi on Billin @17	CO 29 ked Charges ig Demand C, per KVA	(3)	278.4 Total (1+2) Rs.	00.	963 Voltag	≥ O. e rebate on	(6)	0.0		0 - 0 Excess	a Date	
120828.00	125584.	CO 29 ked Charges ig Demand C, per KVA	(3)	278.4 Total (1+2)	00.	963	≥ O. e rebate on	(6)	0.0 Net Total (3-4)	(6)	C - C Excess (1)	C . 1 Demand Ch % on	
120828.00 (1) Energy Char (2) Per KV Rs5.50 785382.00 Rent of CT/PT Tr	125884. ge (2) Fo on BBin @17 \$0728. ransformer	CD 279 Red Charges ing Demand C, \$69 KVA CO Unpaid Am	8.90 (3) 8361 ount	278.4	(4) 1 (4) 1	Voltag	≥ O. e rebate on	(6)	0 - 0 Net Total (3-4) Rs.	(6) @	0 - 0 Excess (1) Q	C . 1 Demand Ch % on + (2)	
120828.00 (1) Energy Char (2) Par KV Rs5.50 785382.00	125884. nge (2) Fo on Billio @17 \$0728.	ved Charges ing Demand (0, per KVA (0)	8.90 (3) 8361 ount	278.4	(4)	Voltag	2 O. e rebate on 20 (63	(6)	0 - 0 Net Total (3-4) Rs.	(6) @	D.D Excess (1) C	0 , 1 Demand Ch % on + (2) , 0 0	
120828.00 (1) Energy Char @ Per KV Rs6.50 785382.00 Rent of CT/PT 3r Sat Rs. 700100 5555	125884. ge (2) Fo on Billin @17 \$0728. ransformer Rent FRSF. 5.3.72 USC 1	CO 29 ved Charges ig Demand C , 049 KVA OO Unpaid Am of FNB Rs.	8.90 (3) 8361 ount 0.00 UC :	278.4 Total (1+2) Rs. 10.00 WCC Amc @ per Rs. 12082 18124.	(4) 1 (4) 1 punt KWH 2.80	Voltag O.O Ele	2 0 . e rebate on 20 B3 ectricity Duty per KWH	(5)	0.0 Net Total (3-4) Rs. 0.00	(6) @ Cur	D.D Excess (1) C	Cl., 1 Demand Ch % on + (2) . 0:0 Bill Amount E.D.	
120828.00 (1) Energy Char (2) Per KV Rs5.50 785382.00 Rent of CT/PT 3r Sat Rs.	125884. ge (2) Fo on Billin @17 \$0728. ransformer Rent FRSF. 5.3.72 USC 1	CO 29 Ked Charges 19 Demand C , \$99 KVA CO Unpaid Am of FNB Rs.	8.90 (3) 8361 ount 0.00 UC :	278.4 Total (1+2) Rs. 10.00 WCC Amo WCC Amo Rs. 12082	(4) 1 (4) 1 punt KWH 2.80	Voltag O.O Ele	2 0. e rebate on 20 80 setnetty Duty per KWH Rs 18331.20	(5) 3611 88	0.0 N.D. 3139.14 0.00 S. on old arrear	(6) @ Cur	0.0 Excess (1) 0 ment E	C , 1 Demand Ch % on + (2) . O.Q. Bill Amount E.D. . 2:0 LIE : Mes: Debits	
120828.00 (1) Energy Char (2) Par.KV Rs5.50 785382.00 Rent of CT/PT 3r Sat Rs. 700.00 5555 Outrent Bill Amou Total	125584. ge (2) Fo on BBir @17 \$0728. ransformer Rant FRS: \$3,72 USC1 Int	CO 29 wed Charges ig Demand Co., the KVA OO Unpaid Am of FNB Rs. O., OO N.D.	(3) (3) (3) (3) (3) (3) (3) (3) (3) (3)	278.4 Total (142) Rs 10.00 WCC Amo @ per Rs. 1208; 18124. rears in Rs. E.D.	(4) N (4) N N N KWH 2.80 .20	963 Vottag 0.(Ele @	2 0. errebate on 20 83 ectricity Duty per KWH Rs 19331.20 USC 7	(5) 3611 88	0.0 Net Total (3.4) Rs. 0.00 N.D. 3139.14 0.00 S. on old arrears % on	(6) (1) Cur 4.6	0.0 Encess (1) 0 ment E	C , 1 Demand Ch % on + (2) . 0:0 3ill Amount E.D. . 2:0 LIE :	
120828.00 (1) Energy Cher (2) Per KV Rs5.50 785382.00 Rent of CT/PT Tr Set Rs. 700.00 5555 Ourrent Bil Amou	125584. ge (2) Fo on BBir @17 \$0728. ransformer Rant FRS: \$3,72 USC1 Int	CO 29 wed Charges ig Demand Co. \$949 KVA OO Unpaid Am of FNB Rs. O + OO	(3) (3) (3) (3) (3) (3) (3) (3) (3) (3)	278.4 Total (1+2) Rs 10.00 WCC Amo Rs, 12082 18124. Trears in Rs.	(4) N (4) N bunt kWH 2.80 ,20	963 Vottag 0.(Ele @	2 0. errebate on 20 83 ectricity Duty per KWH Rs 19331.20 USC 7	(5) 3611 88	0.0 N.D. 3139.14 0.00 S. on old arrear	(6) (1) Cur 4.6	0.0 Excess (1) 0 ment E	C+, I Demand Ch % on + (2) . 0:0 3ill Amount E.D. . 2:0 LIC : NBc Debits N.D	
120828.00 (1) Energy Char (2) Par.KV Rs5.50 785382.00 Rent of CT/PT Tr Set Rs. 700.00 5555 Current Bill Amou Total 781577.34 LPE. or. Current	125584. ge (2) Fo on BBir @17 \$0728. ransformer Rent FRS- S.3.72 USC1 Int PS on FNB	CO 29 Ved Charges Ig Demand Co. \$989 KVA OO Unpaid Am of FNB Rs. O + OO N.D. O 200 USC 1	8.90 (3) 8361 ount 0.00 UC: Ar	278.4 Total (142) Rs 10.00 WCC Amo @ per Rs. 12082 18124. Tears in Rs. E.D. 0.00 LIE 0.00 LIE Total Du	40 0. (4) 1 0 0 0 0 20 20 20 20 20 20 20 20 20 20 2	963 Vottag 0.(Ele @	2 0. e rebate on DO BC ectricity Duty per KWH Rs ISI31.20 USE7 W.C.C. 0.00 0.00	(5) 3611 88 LP	0.0 Net Total (3.4) Rs. 0.00 N.D. 3137.14 0.00 S. on old arream % on 0.00	(6) @ Cur	0.0 Excess (1) 0 ment E	C+, I Demand Ch % on + (2) . 0:0 3ill Amount E.D. . 2:0 LIC : NBc Debits N.D	
120828.00 (1) Energy Cher (2) Per KV Rs5.50 785382.00 Rent of CT/PT 3r Rs 700.00 5555 Current Bill Amou Total 781677.34	125584. ge (2) Fo on Bill @17 \$0728. ransformer Rent FRS	CO 29 Log Charges Ig Demand C , the KVA OO Unpaid Am of FNB Rs. O , OO N.D. O , DO	a. 40 (3) 9361 0.00 UC : A	278.4 Total (142) Rs 10.00 WCC Amo @ per Rs. 12082 18124. Tears in Rs. E.D. 0.00 LIE 0.00 LIE Total Du	(4) 1 (4) 1 5 0 0 0 2 0 2 0 2 0 2 1 0 2 0	963 Vottag 0.(Ele @	2 0. e rebate on 20 B3 ectricity Duty per KWH Rs HS331.20 USC 7 W.C.C. W.C.C.	(6) 3611 L.P.	N.D. N.D. 3139,14 0.00 S. on old arrear % on 0.00 Net Amount Pay Rupees	(6) @ Cur #E	0.0 Excess (1) 0 ment E	C+, I Demand Ch % on + (2) . 0:0 3ill Amount E.D. . 2:0 LIC : NBc Debits N.D	
120828.00 (1) Energy Cher (2) Per KV Rs5.50 785382.00 Rent of CT/PT 3r Rs 700.00 5555 Current Bill Amou Total 781577.3 LP5. on Current anter (2) S on 0.00	125584. ge (2) Fo on BBit @17 \$07/28. ransformer Rent FRS 5.3.72 USC : USC : Int P.S. on FNB Rs. 0.00	CO 29 Ved Charges Ig Demand C , pet KVA OO Unpaid Am of FNB Rs. O , OO N.D. O , OO USC 1 N.E. BB31139 , US	8.90 (3) 8361 ount 0.00 UC: Ar	278.4 Total (1-2) Rs. 10.00 WCC Amo 8 Per Rs. 12082 18124. Tears in Rs. E.D. 0.00 LIE Total Du E.	(4) N (4) N Dunt KWH 2.80 20 21 1 1 220	963 Vottag 0.(Ele @	2 0. e rebate on DO BC ectricity Duty per KWH Rs ISI31.20 USE7 W.C.C. 0.00 0.00	(5) 3611 L.P.:	0.0 Net Total (3.4) Rs. 0.00 N.D. 3137.14 0.00 S. on old arream % on 0.00	(6) @ Cur #E	0.0 Excess (1) 0 ment E	C , 1 Demand Ch % on + (2) . 0:0 3ill Amount E.D. . 2:0 LIC : Mac Debits N.D	
120828.00 1 Energy Char @ Per KV Rs6.50 785382.00 Rent of CT/PT Tr Sat Rs. 900.00 5555 Current Bill Amou Total Total Total Total Total ELPS: se Current wher @	125584. ge (2) Fo on BBir @17 \$0728. ransformer Rent FRS- S.3.72 USC: Int 	0 27 wed Charges ig Demand 0, \$96 KVA 00 Unpaid Am of FNB Rs. 0,000 N.D. 0,000 N.D. 0,000 USC1 N.E 883137, US 0,000 0,000 0,000 0,000 0,000	8.90 (3) 8361 ount 0.00 UC: Au 0. 14 C: 00	278.4 Total (1+2) Rs. 10.00 WCC Amc @ per Rs. 12082 18124. Total Du 0.00 UE Total Du Total Du 48331.	(4) N (4) N Dunt KWH 2.80 20 21 1 1 220	Vottag 0.0 Ele 2 V	2 0. e rebate on 20 83 ectnolty Duty per KWH Rs. 19331.20 USC 7 N.C.C. 0.00 0.00 W.C.C. 12042.80 18124.2 Rs. Nine	(6) 3611 888 LP!	N.D. N.D. 3139,14 0.00 S. on old arrear % on 0.00 Net Amount Pay Rupees	(6) (1) Cur 4(f) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	00 Excess (1) 0 rrent E	C . 1 Demand Ch % on * (2) . 00 Bill Amount E.D. . 20 LIC : N.D Rs.	
120828.00 (1) Energy Cher (2) Per KV Rs6.50 785382.00 Rent of CT/PT Tr Sat Rs. 700.00 5555 Current Bill Amou Total 781877.3 LPS. or Current 199.00 0.00 DEFFERED A JUL-14 UNI SEP-14 UNI	125584. ge (2) Fo on BBir @17 \$0728. ransformer Rent FRSP. S.3.72 USC: USC: USC: USC: USC: USC: 0.00 AMODNT 11: 98000 11: 7432 IT: 1200	0 29 wed Charges ig Demand 0, the KVA 00 Unpaid Am of FNB Rs. 0,000 N.D. 0,000 N.D. 0,000 0,00	8.90 (3) 8361 ount 0.00 UC: A A C: 00	278.4 Total (1/2) Rs. 10.00 WCC Amo (@ per Rs. 12082 18124 12082 18124 12082 18124 18124 12082 18124 12082 18124 0.00 UC 0.00 UC Total 0. 0.00 UC Total 0. 0.00 UC 0.00 UC 0.00 UC 0.00 UC 0.00 UC 0.00 UC 0.00 UC 0.00 0.00	(4) N (4) N (4) N N N N N N N N N N N N N N N N N N N	Vottag 0.0 Ele 2 V	2 0. e rebate on 20 83 ectnolty Duty per KWH Rs. 19331.20 USC 7 N.C.C. 0.00 0.00 W.C.C. 12042.80 18124.2 Rs. Nine	(6) 3611 888 LP!	N.D. N.D. 3137.14 0.00 N.D. 3137.14 0.00 S. on old arrears % on 0.00 Net Amount Pay Rupees 961677.0	(6) (1) Cur 4(f) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	00 Excess (1) 0 rrent E	C . 1 Demand Ch % on * (2) . 00 Bill Amount E.D. . 20 LIC : N.D Rs.	
120828.00 (1) Energy Cher (2) Per KV Rx6.50 785382.00 Rent of CT/PT Tr Set Rx. 700.00 5555 Current Bill Amou Total 781677.31 LPE. or Current #58 (2) 00 0.00 DEFFERED A JUL-14 UNI AUG-14 UNI	125584. ge (2) Fo on BBir @17 \$0728. ransformer Rent FRSP. S.3.72 USC: USC: USC: USC: USC: USC: 0.00 AMODNT 11: 98000 11: 7432 IT: 1200	0 29 wed Charges ig Demand 0, the KVA 00 Unpaid Am of FNB Rs. 0,000 N.D. 0,000 N.D. 0,000 0,00	8.90 (3) 8361 ount 0.00 UC: A A C: 00	278.4 Total (142) Rs 10.00 WCC Amo @ per Rs, 12082 18124. Total Du 0.00 U.00 0.00 UE Total Du 48331. 0.00	(4) (4) 0 0 0 0 0 0 0 0 0 0 0 0 0	Vottag 0.0 Ele 2 V	2 0. e rebate on 20 83 schrictly Duty per KWH Rs. 19331.20 USC 7 W.C.C. 0.00 W.C.C. 12042.80 18124.2 Rs. Nine nd S1 > Hu	(5) 3611 LP: LP: Laco	N.D. N.D. 3137.14 0.00 N.D. 3137.14 0.00 S. on old arrears % on 0.00 Net Amount Pay Rupees 961677.0	(6) Cur 4(able c y 5	C. O Excess (1) O Trent E 3331	C., I Demand Ch % on + (2) . OQ 3ill Amount E.D. . 20 LIE : N.D Rs. IS IA N.D Rs.	
120828.00 (1) Energy Cher (2) Per KV Rx5.50 785382.00 Rent of CT/PT Tr Set Rx. 700.00 5555 Current Bill Amou Total 781577.34 LPE. or Current wher (2 % or 0.00 DEFFERED A JUL-14 UNI SEP-14 UNI FAX NO	125584. ge (2) Fo on BBir @17 \$0728. ransformer Rant FRS- \$3.72 USC: USC: USC: USC: USC: Int 	0 29 (ed Charges 19 Demand 0, \$99 KVA 00 Unpaid Am of FNB Rs. 0,000 N.D. 0,000 0,0	8.90 (3) 8361 ount 0.00 UC: Ar 0.00 UC: Ar 0.00 UC: Ar	278.4 Total (1/2) Rs. 10.00 WCC Amo @ per Rs. 12082 18124. Tears in Rs. E.D. 0.00 UE Total Du E 48331. 0.00	(4) N (4) N (4	Vottag	2 0. e rebate on 20 B3 schnelty Duty per KWH Rs. 19331.20 USC7 W.C.C. 0.00 W.C.C. 12082.80 18124.2 Rs. Nine Id Six Hu Accounta	(6) 3611 LP: Lac	0.0 Net Total (3.4) Rs. 0.00 N.D. 3139.14 0.00 S. on old arrear % on 0.00 Net Amount Pay Rupees 961677.0 s. Sixty D ed Sevent	(6) (1) Cur Cur Cur Cur Cur Cur Cur Cur	00 Excess (1) 0 7 3331	C. I Demand Ch % on + (2) . 00 Bill Amount E.D . 20 LIC : Mac. Debts N.D Rs. N.D Rs.	
120828.00 (1) Energy Char (2) Per KV Rs6.50 785382.00 Rent of CT/PT Tr Sat Rs. 700.00 5555 Current Bill Amou Total 781677.3 LPS.en.Current L energ (2) on 0.00 DEFFERED A JUL-14 UNI SEP-14 UNI TOTAL UNIT	125584. ge (2) Fo on BBir @17 \$0728. ransformer Rant FRS- \$3.72 USC: USC: USC: USC: USC: Int 	0 29 0 20 0 20	8.90 (3) 8361 ount 0.00 UC: Ar 0.00 UC: Ar 0.00 UC: Ar	278.4 Total (142) Rs 10.00 WCC Amo @ per Rs, 12082 18124. Total Du 0.00 U.00 0.00 UE Total Du 48331. 0.00	(4) N (4) N (4	Vottag	2 0. e rebate on 20 B3 schnelty Duty per KWH Rs. 19331.20 USC7 W.C.C. 0.00 W.C.C. 12082.80 18124.2 Rs. Nine Id Six Hu Accounta	(5) 3611 LP: LP: Laco	0.0 Net Total (3.4) Rs. 0.00 N.D. 3139.14 0.00 S. on old arrear % on 0.00 Net Amount Pay Rupees 961677.0 s. Sixty D ed Sevent	(6) Cur 4(able c y 5	00 Excess (1) 0 7 3331	C., I Demand Ch % on + (2) . OQ 3ill Amount E.D. . 20 LIE : N.D Rs. IS IA N.D Rs.	

Steam loss chart

