

NORMALIZATION DOCUMENT AND MONITORING & VERIFICATION GUIDELINES

Iron & Steel Sector

MINISTRY OF POWER GOVERNMENT OF INDIA

NORMALIZATION DOCUMENT AND MONITORING & VERIFICATION GUIDELINES

Iron & Steel Sector

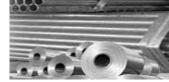
MINISTRY OF POWER GOVERNMENT OF INDIA

© Bureau of Energy Efficiency, Government of India, March 2015

All rights reserved. No part of this document may be reproduced in any form or by any means without prior permission of Bureau of Energy Efficiency, Government of India.

Published by

Bureau of Energy Efficiency Ministry of Power, Government of India 4th Floor, Sewa Bhawan R K Puram New Delhi -110 066


Developed specifically for Designated Consumers notified under Perform Achieve and Trade (PAT) Program for National Mission for Energy Efficiency (NMEEE)

Disclaimer

This document has been developed after an extensive consultation with a number of experts and stakeholders of the scheme. BEE disclaim any liability for any kind of loss whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, or reliance on this document.


Conceptualized by Media NMEEE

Processed and Printed in India by Viba Press Pvt. Ltd., C-66/3, Okhla Industrial Area, Phase-II, New Delhi-110020 Tel. : 011-41611300 / 301 Email : vibappl@hotmail.com

Contents

1	Intro	Introduction					
	1.1	Nation	nal Mission for Enhanced Energy Efficiency	1			
	1.2	Perform, Achieve and Trade (PAT) Scheme					
2	Back	cgroun	đ	2			
3	Cate	gorizat	ion and Distribution	3			
4	Baseline value establishment:						
	4.1	Definition					
		4.1.1	Baseline Year	4			
		4.1.2	Baseline Production (P base)	4			
		4.1.3	Baseline Specific Energy Consumption (SECbase)	4			
		4.1.4	Baseline Capacity Utilization in % (CUbase)	4			
		4.1.5	Target Specific Energy Consumption (SECtarget)	4			
		4.1.6	Estimation of Energy Saving (MTOE)	4			
5	Met	Methodology for establishing the target					
	5.1	Estimation of Gate -to- Gate Baseline SEC					
	5.2	Metho	odology of calculation of Target	4			
6	Bool	k Cove	rage	6			
7	Nor	Normalization / Correction factor					
7.1 Normalization due to furnace cold startup a factor:			alization due to furnace cold startup and Hot Stop caused due to external	7			
		7.1.1	Definition of Cold Startup and Hot Stop of Furnace:	7			
		7.1.2	Methodology	10			
		7.1.3	Normalization of Furnace Cold Start due to external factor for Thermal energy consumption	10			
		7.1.4	Documentation	11			
	7.2	Produ	ct Mix	11			
		7.2.1	Methodology	11			
		7.2.2	Need for Normalization	12			
		7.2.3	Value Added Product	13			
		7.2.4	Normalization Formula	14			
	7.3	Impor	t & Export of Intermediary product:	23			

	7.3.1	Methodology:	23			
	7.3.2	Need for Normalization:	23			
	7.3.3	Normalization Methodology:	24			
	7.3.4	Normalization formula	25			
7.4	Norm	alization for Scrap Use	26			
	7.4.1	Need for Normalization:	29			
	7.4.2	Normalization Formula	29			
7.5	Powe	r Mix	29			
	7.5.1	Baseline Year Methodology:	31			
	7.5.2	Need for Normalization:	31			
	7.5.3	Power Mix Normalization methodology	31			
	7.5.4	Power Mix Normalization Calculation	32			
	7.5.5	Documentation	33			
7.6	Fuel Ç	Quality Normalization (Quality of Coal in CPP & Co-Gen):	33			
	7.6.1	Fuel Quality Normalization	34			
	7.6.2	Pre-Requisite	34			
	7.6.3	Coal Quality Normalization Methodology	34			
	7.6.4	Normalization Formula	35			
	7.6.5	Normalization Calculation	36			
	7.6.6	Documentation	36			
	7.6.7	Note on Proximate and Ultimate Analysis of Coal	36			
7.7	Other	S	36			
	7.7.1	Environmental concern (Additional Environmental Equipment requirement due to major change in government policy on Environment)	36			
	7.7.2	Fuel replacements (Unavailability of Bio-mass/Alternate Fuel w.r.t baseline year)	38			
	7.7.3	Construction Phase or Project Activity Phase	38			
	7.7.4	Addition of New Line/Unit	39			
	7.7.5	Unforeseen Circumstances	40			
	7.7.6	Renewable Energy	41			
7.8	Total	Normalized energy consumption of the DC (E) (TOE)	42			
Exai	nples -	Normalization Factors:	43			
8.1	Norm	Normalization for Start Shop 43				

8

	8.2	8.2 Normalization Factor for Use of Scrap					
	8.3	Norma	lization Coal Quality in CPP & Cogeneration:				
	8.4	Normalization Factor Example for Product Mix: 46					
	8.5	Norma	alization for Intermediary Product	53			
	8.6	Norma	alization Example for Others	58			
		8.6.1	Environmental Concern	58			
		8.6.2	Biomass / Alternate Fuel Unavailability w.r.t. Baseline year (Replacement due to external factor)	59			
		8.6.3	Construction Phase or Project Activities	60			
		8.6.4	Addition of New Unit/Line (In Process and Power generation)	61			
		8.6.5	Unforeseen Circumstances (External Factor)	63			
		8.6.6	Renewable Energy	64			
9	Nori	nalizat	ion factors for Integrated Steel Plant	69			
	9.1	Raw N	Iaterial Quality	69			
		9.1.1	Coke Ash for Blast and Corex Furnaces	69			
		9.1.2	Alumina in Sinter/Pellet	71			
		9.1.3	Alumina in Blast Furnace/Corex Burden	72			
	9.2 Coke Mix		Mix	73			
9.3 Power Mix		Mix	74				
		9.3.1	Power Mix Normalization for Power Sources	74			
		9.3.2	Power Mix Normalization for Power Export	75			
	9.4	Process Route Change		76			
	9.5	Produ	ct Mix	76			
	9.6	9.6 Start Stop due to external factor		82			
	9.7	Norma	alization Others	84			
		9.7.1	Environmental Concern	84			
		9.7.2	Biomass/Alternate Fuel Unavailability w.r.t. Baseline year	85			
		9.7.3	Construction Phase or Project Activities	87			
		9.7.4	Addition of New Line (In Process and Power Generation)	89			
		9.7.5	Unforeseen Circumstances	91			
		9.7.6	Renewable Energy	93			
	9.8	Gate to	o Gate Specific Energy Consumption	95			
10	Exan	kample-Normalization Factors:-					

10.1	Normalization Factor for Raw Material Quality:-				
	10.1.1	Normalization Factor for Coke and Coal Ash for Blast and Corex Furnaces:-	96		
	10.1.2	Normalization Factor for Alumina in Corex & Blast Furnace Burden:-	99		
	10.1.3	Normalization due to Process Route Change due to External Factors	100		
10.2	Norm	alization Factor for Process Route Change due to External Factors:-	100		
10.3	Norm	alization Factor for Purchased Coke / Own Coke Mix:-	101		
10.4	Norm	alization Factor for Product Mix:-	102		
10.5	Power	Mix	107		
10.6	.6 Start & Stop of major Equipment due to External factors				
10.7	7 Normalization Example for Others				
	10.7.1	Environmental Concern	115		
	10.7.2	Biomass / Alternate Fuel Unavailability w.r.t. Baseline year (Replacement due to external factor)	117		
	10.7.3	Construction Phase or Project Activities	119		
	10.7.4	Addition of New Unit	121		
	10.7.5	Unforeseen Circumstances (External Factor)	124		
	10.7.6	Renewable Energy	127		
Con	clusion		131		
Ove	Overriding Clause				

11 12

Part-II

MONITORING & VERIFICATION GUIDELINES

1.	Introduction				
	1.1.	Backg	round	135	
	1.2. Purpose			136	
	1.3. Definition of M&V			136	
	1.4. Empanelled Accredited Energy Auditor or Verifier		nelled Accredited Energy Auditor or Verifier	137	
		1.4.1.	Qualification of Empanelled Accredited Energy Auditor (EmAEA) for Verification and Check-Verification	138	
		1.4.2.	Obligation of Empanelled Accreditor Energy Auditor	138	
	1.5.	Impor	tant Documents required for M&V process	139	
	1.6.	Stakeł	nolders	140	
2.	Broa	nd Role	s and Responsibilities	140	
	2.1.	Gener	al	140	
	2.2.	Desig	nated Consumer	141	
	2.3.	Empa	nelled Accredited Energy Auditor (EmAEA)	143	
	2.4.	State I	Designated Agencies (SDA)	144	
	2.5.	Adjud	licator	145	
	2.6.	Burea	u of Energy Efficiency	145	
	2.7.	Minist	try of Power	146	
	2.8.	Institu	utional Framework for PAT	146	
3.	Proc	ess & I	Timelines	147	
	3.1.	Activi	ties and Responsibilities	147	
	3.2.	Proces	ss Interlinking	148	
		3.2.1.	Process of Issuance of Escerts	149	
	3.3. Flow Chart showing verification process (Rules and Act required dates in bol Italics)				
4.	Veri	fication	n requirement	151	
	4.1.	Guide	lines for Selection Criteria of EmAEA by Designated Consumer	151	
	4.2.	Guide	lines for Empanelled Accredited Energy Auditor	151	
	4.3.	Guide	lines for Verification process	152	
		4.3.1.	Sector Specific Pro-forma	152	
		4.3.2.	Reporting in Sector Specific Pro-forma	153	

		4.3.3.	Verification Process	154
		4.3.4.	Primary and Secondary source of Documentation	157
5.	Und	erstand	ding Conditions	181
	5.1.	Specif	ic Issues	182
	5.2.	Fuel		183
	5.3.	Norm	alization Condition and calculation	184
	5.4.	Norm	alisation General Issue	186
6.	Abb	reviati	ons	188
7.	Ann	exure		189
	7.1.	Anney	xure I: Thermal Power Plant	190
	7.2.	Anney	xure II: Steel	195
	7.3.	Anney	xure III: Cement	200
	7.4.	Anney	xure IV: Fertilizer	204
	7.5.	Anney	xure V: Aluminium	221
	7.6.	Anney	xure VI: Pulp & Paper	224
	7.7.	Anney	xure VII: Textile	247
	7.8.	Anney	xure VIII: Chlor Alkali	253

Tables

Table 1:	Activities and Responsibilities for PAT Cycle I	147
Table 2:	Team Details (Minimum Team Composition)	152
Table 3:	Production and Capacity Utilisation details	157
Table 4:	Major Equipment capacity and Operating SEC	159
Table 5:	Boiler Details (Process and Co-Generation)	160
Table 6:	Electricity from Grid/Others, Renewable Purchase Obligation, Notified Figures	162
Table 7:	Own generation through Captive Power Plants	164
Table 8:	Solid Fuel Consumption	168
Table 9:	Liquid Fuel Consumption	171
Table 10:	Gaseous Fuel Consumption	174
Table 11:	Documents for Quality Parameter	175
Table 12:	Documents related to Environmental Concern, Biomass/Alternate Fuel availability, Project Activities, New Line commissioning,	177
	Unforeseen Circumstances	
Table 13:	Documents related to External Factor	181
Table 14:	Lump Co-Generation treatment	185
Table 15:	Auxiliary Power Consumption Details (a,b,c)	190
Table 16:	Sponge Iron Subsector- Major Product details	197
Table 17:	Section wise Specific Power Consumption Details	201
Table 18:	Mass and Energy balance	202
Table 19:	Clinker Factor calculation	203
Table 20:	Material and Energy balance of Fertilizer sector	204
Table 21:	Material balance of all inputs in Fertilzer sector	207
Table 22:	Section wise Energy Consumption details	221
Table 23:	Section wise Energy Consumption details	222
Table 24:	Voltage Distribution	223
Table 25:	General details required in wood based Pulp and Paper Mills	225
Table 26:	Documents required wood based Pulp and Paper Mills	229
Table 27:	General details required in Agro based Pulp and Paper Mills	233
Table 28:	Document required for Agro based Pulp and Paper Mills	237
Table 29:	General details required in RCF based Pulp and Paper Mills	241
Table 30:	Documents required in RCF based Pulp and Paper	245
Table 31:	Section wise Energy Consumption	248
Table 32:	Section wise Energy Consumption	250
Table 33:	Product Name in Fiber Sun-sector	252
Table 34:	Section wise Energy Consumption	252
Table 35:	Section wise Energy details	253

Figures

Figure 1:	M&V Documents	139
Figure 2:	Stakeholders	140
Figure 3:	Institutional Framework	146
Figure 4:	Stakeholders Interlinking	148
Figure 5:	Flow Chart of ESCerts issuance	149
Figure 6:	Time Line Flow Chart	150
Figure 7:	Stakeholders Output	155
Figure 8:	Ex-GtG Boundary for Thermal Power Plant	193
Figure 9:	Ex-Coal/Lignite/Oil/Gas based Thermal Power Plant Energy balance diagram	194
Figure 10:	Ex-CCGT Energy balance diagram	195
Figure 11:	Product Mix diagram	197
Figure 12:	Ex-GtG Boundary boundary for Sponge Iron Sub-sector	198
Figure 13:	Figure 14: Ex-GtG boundary for Cement Sector	202
Figure 15:	Fertilizer plant Battery Limit block diagram	209
Figure 16:	Overall Material and Energy balance	212
Figure 17:	Ex- GtG boundary for Aluminium (Refinery sub sector)	222
Figure 18:	Ex- GtG boundary for Aluminium (Smelter sub sector)	223
Figure 19:	Ex- GtG boundary for Aluminium (Cold Sheet sub sector)	224
Figure 20:	Ex- GtG boundary and metering details for Wood based Pulp and Paper Mill	228
Figure 21:	Ex- GtG boundary and metering details for Agro based Pulp and Paper Mill	236
Figure 22:	Ex- GtG boundary for Textile (Spinning sub sector)	249
Figure 23:	Ex-GtG boundary for Textile (Composite/ Processing sub sector)	251
Figure 24:	Ex- GtG boundary for Textile (Fiber) Sub- sector	253
Figure 25:	Ex- GtG boundary for Chlor-Alkali sector	254

BUREAU OF ENERGY EFFICIENCY (Government of India, Ministry of Power) vt; eliji ihpMn eglimški Ajay Mathur, Ph.D. Director General

Foreword

Perform Achieve and Trade (PAT), a flagship initiative under National Mission for Enhanced Energy Efficiency (NMEEE), is a regulatory intervention for reduction of specific energy consumption, with an associated market based mechanism through which additional energy savings can be quantified and traded as ESCerts.

Iron & Steel sector is one of the 8 notified energy intensive sectors under which a total of 67 plants are participating in this program. These plants have been mandated to reduce their Specific Energy Consumption (SEC) from baseline year of 2009-2010. It is expected that these plants may save 1.486 million tons of oil equivalent annually by the end of PAT cycle –I.

The publication of "**Normalization Document and M&V Guidelines**" for Iron & Steel Sector is an effort to facilitate the DCs to comply with notified PAT rules to participate with the PAT scheme and contribute towards achieving national target of energy savings. This document will also be helpful to all empanelled Accredited Energy Auditors (EmAEAs) and State Designated Agencies (SDAs) in the monitoring and verification process of PAT.

I want to record my appreciation for members of the Sectoral Expert Committee on Iron & Steel Sector, chaired by Shri T.K Chakravarty, Shri S.K Khandare, Energy Economist, BEE, Shri Himanshu Chaudhary, Project Engineer, BEE and Shri Rakesh Kesri, Sector Expert, who worked tirelessly to put together the baseline data, normalization factors and M&V methodology for the sector. I especially want to record my appreciation for Shri S. Vikash Ranjan, Technical Expert, GIZ who has put together the data and methodology associated with normalization.

I also compliment the efforts of all participating industrial units towards their endeavor in contributing to the national energy saving targets.

Ingr , oaj KVfgr esåt IZcpk; Save Energy for Benefit of Self and Nation

pläikry] 1 sk Hou] vij0 d.9 ige] uhZinYyl&110 066 4th Floor, Sewa Bhawan, R.K. Puram, New Delhi - 110 066 **Vy/h**Tel : 26178316 (**1 lilli**Direct) 26179699 (5 Lines) **QSI** /Fax : 91 (11) 26178328 **hRey**//E-mail : dg-bee@nic.in **OS1 lby**/Web-Site : www.beeindia.in

Sectoral Expert Committee on Iron & Steel

S. No	Name of Member	
1.	Shri T.K Chakravarty	Chairman
2.	Shri. Suresh Prasad	Member
3.	Shri. R.K. Bagchi	Member
4.	Shri. Saluja	Member
5.	Shri Rakesh Kesri	Invitee

Technical Sub Committee on Iron & Steel

S. No	Name of Member	Designation		
1.	Shri J.P.N. Singh	Chairman, Chief (Fuel Mgmt.) Tata Steel Ltd.		
2.	Shri P.K. Sarkar	Vice President (Energy Mgmt., TQM & Innovation), JSW Steel Limited		
3.	Shri S. Balaji	AGM , SAIL, RDCIS, Durgapur Centre, Durgapur		
4.	Shri P. Banerjee	AGM, RDCIS, ISPAT Bhawan, Doranda, Ranchi		
5.	Mrs. B. Mukherjee	Sr. Manager (EMD), Bhilai Steel Plant, SAIL, Bhilai		
6.	Shri Nimish Parikh	imish Parikh General Manager (EMD) Essar Steel Limited		
7.	Shri K. Sudhakar Asst. General Manager (Operation), Rashtriya Ispat Nigam Ltd.			
8.	Dr. S.S. Krishnan Principal Research Scientist, CSTEP,			
9.	Shri. Dipendra Kashiva	Executive Director, Sponge Iron Manufacturers Association		
10.	Shri. Anil Singh Rana	Sr. General Manager, Welspun Steel Ltd		

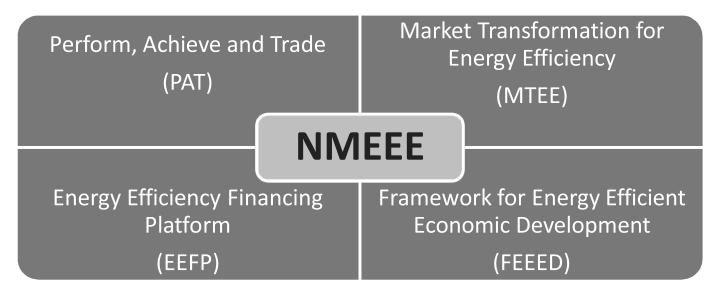
Special Thanks to Team NMEEE

S. No	Name of Member	Designation		
1.	Shri Kapil Mohan, IAS	Ex. Deputy Director General, NMEEE		
2.	Shri Alok, IAS	Ex Deputy Director General, NMEEE		
3.	Shri K.K. Chakarvarti	Ex .Energy Economist		
4.	Shri Ashok Kumar	Energy Economist		
5.	Shri Sunil Khandare	Energy Economist		
6.	Shri Saurabh Diddi	Energy Economist		
7.	Shri Sameer Pandita	Assistant Energy Economist, BEE		
8.	Shri Arijit Sengupta	Assistant Energy Economist, BEE		
9.	Shri Girija Shankar	Assistant Energy Economist, BEE		
10.	Smt. Vineeta Kanwal	Assistant Energy Economist, BEE		
11.	Shri Ajay Tripathi	Media Manager		
12.	Shri KK Nair	Finance and Accounts officer, BEE		
13.	Shri A K Asthana	Senior Technical Expert, GIZ		
14.	Shri Vikas Ranjan	Technical Expert, GIZ		

1. Introduction

The National Action Plan on Climate Change (NAPCC) released by the Prime Minister on 30 June, 2008, recognises the need to maintain high economic growth to raise the living standards of India's vast majority of people and simultaneously reducing their vulnerability to the impacts of climate change.

The National Action Plan outlines eight national missions that represent multi-pronged, longterm, and integrated strategies for achieving key goals to mitigate the impact of climate change. These missions are listed below:

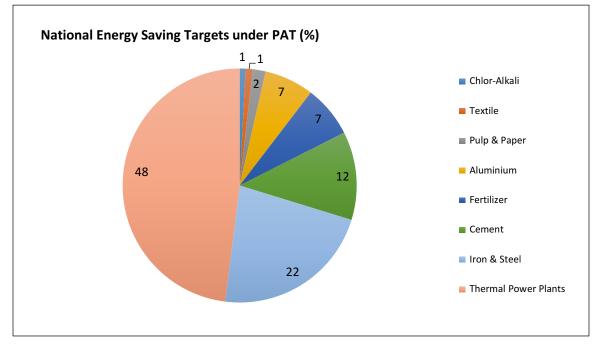

- National Solar Mission
- National Mission for Enhanced Energy Efficiency
- National Mission on Sustainable Habitat
- National Water Mission
- National Mission for Sustaining the Himalayan Ecosystem
- > National Mission for a Green India
- > National Mission for Sustainable Agriculture

 National Mission for Strategic Knowledge for Climate Change

1.1 National Mission for Enhanced Energy Efficiency

The National Mission for Enhanced Energy Efficiency (NMEEE) is one of the eight national missions with the objective of promoting innovative policy and regulatory regimes, financing mechanisms, and business models which not only create, but also sustain, markets for energy efficiency in a transparent manner with clear deliverables to be achieved in a time bound manner. It also has inbuilt provisions for monitoring and evaluation so as to ensure transparency, accountability, and responsiveness. The Ministry of Power (MoP) and Bureau of Energy Efficiency (BEE) were tasked to prepare the implementation plan for NMEEE.

NMEEE spelt out the following four new initiatives to enhance energy efficiency, in addition to the programmes on energy efficiency being pursued. These are:



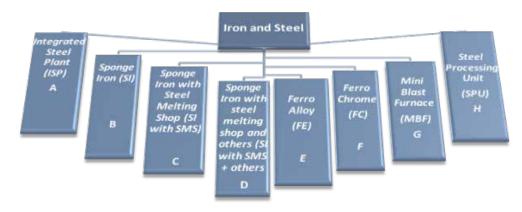
- Perform, Achieve and Trade (PAT), a market based mechanism to make improvements in energy efficiency in energy-intensive large industries and to make facilities more cost
 effective by certification of energy saving that can be traded.
- Market Transformation for Energy Efficiency (MTEE) accelerates the shift to energy-efficient appliances in designated sectors through innovative measures that make the products more affordable.
- Energy Efficiency Financing Platform (EEFP), a mechanism to finance demand side management programmes in all sectors by capturing future energy savings.

Framework for Energy Efficiency Economic Development (FEEED), for developing fiscal instruments to promote energy efficiency.

1.2 Perform, Achieve and Trade (PAT) Scheme Under the National Mission on Enhanced Energy Efficiency (NMEEE), a market based mechanism known as **Perform, Achieve and Trade (PAT)** has been developed and launched to improve energy efficiency in the large energy intensive industries. It is envisaged that 6.686 million tonnes of oil equivalent will be reduced by 2014-15, which is about 4% of energy consumed by these industries. Under the PAT scheme, targets have been specified for all energy intensive industries notified as designated consumers (DCs) under the Energy Conservation Act, including thermal power stations.

2. Background

The methodology of setting targets for designated consumers is transparent, simple and easy to use. It is based on reduction of specific energy consumption (SEC) on a gateto-gate (GtG) basis to achieve targeted savings in the first commitment period of 3 years (2012-2015); the reduction in this phase is of about 4.1% which is estimated at 6.686 million tonnes of oil equivalent (mtoe). Of the 23 mtoe set as target from NMEEE, the PAT scheme is focussed on achieving 6.686 mtoe by 2015.


The threshold limit of 30,000 tonnes of oil equivalent (toe) has been marked as the cut-off limit criterion for any unit in the iron & steel sector to be identified as designated consumer (DC)under PAT. Cycle 1 of the scheme has identified 67iron & steel plants as designated consumers with coal/lignite/gas/diesel as primary energy sources.The iron & steel sector has been categorised on the basis of their products/processes into eight sub-sectors, i.e. integrated steel plant, sponge iron, sponge iron + steel melting shop, sponge iron + steel melting shop + others, ferro alloys, ferro chrome, mini blast furnace and steel processing units. The total reported energy consumption of these designated consumers is about 25.32 million tonne of oil equivalent (mtoe). By the end of the first PAT cycle, energy savings of 1.486 million tonnes of oil equivalent/year is expected to be achieved, which is around 22% of the total national energy saving targets assessed under PAT.


S.No.	Sector	No. of Identified DCs	Annual Energy Consumption (Million toe)	Share Consumption (%)	Apportioned Energy Reduction Consumption For PAT Cycle -1 (%)
1	Power (Thermal)	144	104.56	63.38%	3.211
2	Iron & Steel	67	25.32	15.35%	1.486
3	Cement	85	15.01	9.10%	0.815
4	Aluminium	10	7.71	4.67%	0.456
5	Fertiliser	29	8.20	4.97%	0.478
6	Paper & Pulp	31	2.09	1.27%	0.119
7	Textile	90	1.20	0.73%	0.066
8	Chlor- Alkali	22	0.88	0.53%	0.054
	Total	478	164.97	100.00%	6.686

3. Categorisation and Distribution

For the establishment of energy consumption norms and standards in the iron & steel sector, designated consumers have been grouped based on similar processes and profiles. This is to arrive at a logical and acceptable spread of SECs among DCs which may be compared in setting targets.

The iron & steel sector DCs have been categorised on the basis of their process into the following sub sectors.

4. Baseline value establishment

The complexities of the iron & steel sector made it difficult to arrive at standardised specific energy consumption (SEC). However, the best possible combination and categorisation have been worked out so that no designated consumer has any grievance on the targets set out. While developing the target setting methodology for DCs, the unit which has the best SEC in the group has been set as a reference to calculate the target.

4.1 Definition

4.1.1 Baseline Year

Baseline year is declared as 2009-10.

4.1.2 Baseline Production (P hase)

The arithmetic average of Production figures in Tonnes of 2007-08, 2008-09 and 2009-10.

4.1.3 Baseline Specific Energy Consumption (SEC_{base})

The arithmetic average of SEC figures of 2007-08, 2008-09 and 2009-10.

4.1.4 Baseline Capacity Utilization in % (CU_{base)}

Arithmetic average of Capacity figures of 2007-08, 2008-09 and 2009-10.

4.1.5 Target Specific Energy Consumption (SECtarget)

SEC as estimated in Assessment Year (FY 2014-15).

4.1.6 Estimation of Energy Saving (MTOE)

BaselineYearProductionX (BaselineYearSEC-AssessmentYearSEC)

5. Methodology for establishing the target

- Sectorial target is allocated based on a prorata basis of total energy consumption in the Iron & Steel sector among all the 8 sectors under PAT scheme.
- Sub-Sectorial target is allocated based on a pro-rata basis of total energy consumption in the sub-sector.
- The DC level target is allocated based on a statistical analysis derived from 'Relative SEC' concept. This approach will be applicable to all the DCs of a subsector only.

5.1 Estimation of Gate-to-Gate Baseline SEC

The baseline Specific Energy Consumption (SEC) has estimated basedon a Gate to Gate (GtG) concept which is given as:

Specific Energy Consumption (SEC)

=Net Energy Input into the Designated Consumer^'s Boundary

/ TotalQuantity of Output Exported from the Designated Consumer[^] s Boundary

5.2 Methodology of calculation of Target

Steps for calculating Baseline and Target Year's Specific Energy Consumption (SEC):

The calculation methodology is divided into subsequently 3 phases

- A) Baseline Year Phase
- B) Intermediary Phase
- C) Assessment Year final Target Setting Phase

A) Baseline Phase:

The step by step methodology for the **baseline SEC calculation phase** is given below:

Step 1:

Baseline Production (Tonne) = Arithmetic Average of Production (in Tonne) of FY 2007 – 08, 2008 – 09 & 2009 – 10

Step 2:

```
Baseline Total Energy Consumption (TOE)
= Arithmetic Average of Energy Consumption (TOE) of FY 2007 – 08,2008
– 09 & 2009
– 10 (Excluding Renewable Source of Enegy not connected to Grid)
```

Step 3:

 $Baseline GtG Specific Energy Consumption (TOE) = \frac{Baseline Total Energy Consumption (TOE)}{Baseline Total Production (Tonne)}$

Step 4: Relative Specific Energy Consumption (SEC)

The relative SEC is calculated specifically for every individual group. It is ratio of SEC of individual Designated Consumer to that of the Designated Consumer having minimum SEC in that group.

Baseline Relative Specific Energy Consumption (TOE/Tonne) $= \frac{Baseline SEC of DCs (TOE/Tonne)}{Minimum SEC of DCs in Group (TOE/Tonne)}$

Step 5: Estimation of Target SEC

Estimation of Target SEC (E) = (1 - Relative SEC(D)/100) X Baseline SEC (C)


Step 6: Approximate Saving Achieved after Assessment / Target year (F):

Approx Saving Achieved in AY (F) = (Baseline SEC – Target Year SEC) X Baseline Production (A)

Step 7: Estimation of Sub-Group's Energy Consumption and Energy Saving Targets:

To estimate the Sub – Group's total energy consumption and total energy saving target, following data has been considered:

- (i) Total energy consumption of Sub sector
- (ii) Saving Energy from Sub- Sector (Depending on the pro-rata basis, this saving Potential has been divided into several sub group of respective sector.)

Step 8: Calculation of total saving from Sub-group of sub sector

 $\begin{aligned} & \textit{Total Saving from Sub - Group of Sub - Sector} \\ &= \left(\frac{Total \, Energy \, Consumption \, of \, Sub - Sector}{Saving \, Energy \, from Sub - Sector}\right) X \, Total \, energy \, consumption \, of \, sub \\ &- \, group \, [Sum \, of \, value \, of \, DCs \, calculated \, with `D'] \end{aligned}$

Step 9:

 $\textbf{Multiplication Factor X} = \frac{Total Saving Calculated from Sub group of SubSector}{\sum Approx. Saving at Target Year}$

Factor X is calculated because the summation of saving calculated from formula F is very less as compared to the allotted saving to the sub sector. So the saving potential of each DC in the group has been extended by factor X.

Step 10:

% **Reduction in Baseline SEC X** = Multiplication Factor X Relative SEC

Step 11:

Target for Each Individual DC X = $\left(1 - \frac{\% \text{ Reduction in Baseline}}{100}\right) X$ Baseline GtG SEC

Step 12:

Estimated Total Saving (TOE) = (Baseline SEC - Target SEC)X Baseline Production (Tonne)

6. Book Coverage

The normalization equation will be discussed in details in the different sections of Integrated Steel Plant (ISP) sub-sector and Sponge Iron (SI) sub-sector. The different process of Sponge Iron subsectorcovered are

- Sponge Iron
- Sponge Iron with Steel Melting Shop
- Sponge Iron with Steel Melting Shop and Others
- Sponge Iron + SMS + Others
- Ferro Allloy
- Ferro Chrome
- Mini Blast furnace
- Steel Processing Unit

A. Sponge Iron

7. Normalization/Correction factor

There are several factors that need to be taken into consideration on capacity utilization of DCs for Normalization of a product under PAT rules, so that the undue advantage or disadvantage could not be imposed on DC. There are many factors, which can influence the Specific Energy Consumption (SEC) of a DC, are listed below:

- 7.1 Normalization for Start & Stop of the furnace
- 7.2 Product Mix
- 7.3 Import & Export of Intermediary product
- 7.4 Normalization for Scrap Use
- 7.5 Power Mix (Imported & Exported from/