

MECHWELL DRIVEN BY INNOVATION

Capacity Building of Officers from Petroleum Refining Sector on Efficient Use of Energy

07th July, 2017 IOCL, Vadodara

Presented By : Akshay Shah

Introduction

Established in 1983, Mechwell is a multi-discipline applied R&D oriented engineering firm. Mechwell was established to provide solutions for Cement, Power & Allied industries for flow, emissions & energy consumption problems.

Business:

- Turnkey Solutions to Cement, Power & Allied Industries including custom engineering, specialty systems design (EFIP), manufacturing and implementation, and support to industry in emissions control to achieve SPM<30mg, heat and mass transfer, and applied energy systems.
- Design, Manufacture & Supply of Expansion Joints, Dampers & Gates and EFIP's
- CFD & FEA Consultancy Services.

Domains :

Research & Development, Testing, Manufacturing & Supply, Air Pollution Control

Mechwell Industries Ltd..

R&D – CENTER FOR INNOVATION

TESTING & COMMISSIONING

MANUFACTURING

AIR POLLUTION CONTROL

 The use of a range of advanced tools including Computational Fluid Dynamics (CFD),

Finite Element Analysis (FEA) Computer Aided Design (CAD) and other simulation technologies.

 Mechwell provides Computer Aided Engineering services to a host of industries, most notably the Power, Cement, Aviation, Oil and Gas, Renewable Energies and Automotive sectors.

CAE-R&D CENTER FOR INNOVATION

• Why CFD - Computational Fluid Dynamics ?

- It's the numerical analysis method involving large computerized iterations for predicting fluid flow patterns .
- Time efficient & Optimized Solutions
- Process for Design Optimization
- Computerized 3D CAD model is developed with Actual Site Drawings
- High Quality Unstructured Hex Mesh is prepared for the model
- After confirmation from client fluid flow simulation is proceeded to Analyze flow patterns
- Optimum of design Changes for Ideal fluid flow across the system

OpenVFOAM

R&D - CENTER FOR INNOVATION

 The use of a range of advanced tools including Computational Fluid Dynamics (CFD), Finite Element Analysis (FEA) Computer Aided Design (CAD) and other simulation technologies.

Why CFD - Computational Fluid Dynamics ?

- It's the numerical analysis method involving large computerized iterations for predicting fluid flow patterns.
- Time efficient & Optimized Solutions

$$\{\frac{\partial}{\partial x}(\overline{u^2}) + \frac{\partial}{\partial y}(\overline{uv}) + \frac{\partial}{\partial z}(\overline{uw})\} = -(\frac{\partial\overline{p}}{\partial x}) + \{\frac{\partial}{\partial x}(\mu\frac{\partial\overline{u}}{\partial x} - \rho\overline{u'^2}) + \frac{\partial}{\partial y}(\mu\frac{\partial\overline{u}}{\partial y} - \rho\overline{u'v'}) + \frac{\partial}{\partial z}(\mu\frac{\partial\overline{u}}{\partial z} - \rho\overline{u'w'})\}$$

CAE - APPLICATION DOMAINS $\mathcal E$ FOCUS AREAS

CFD IN POWER PLANTS

COMPUTATIONAL FLUID DYNAMICS : STEPS

- \checkmark Identification of problem
- ✓ Data Collection
- ✓ Modeling
- ✓ Mesh Generation
- ✓ Boundary Condition
- ✓ Evaluation
- ✓ Modification/ Analysis
- ✓ Simulation
- \checkmark Verification

CFD RESULTS: AH Outlet TO ESP Outlet

COMPARATIVE - CFD RESULTS FOR AH A PASS

After Modification of Designing the of duct plates & Guide plates at marked location, the immediate flow obstruction & flow Concentration has been avoided & flow is nearly uniform in the duct.

Velocity Plot: Modified_ESP Inlet Duct

Table shows pressure drop across different sections for existing and modified case

Location	Existing Model pressure drop mm WC	Modified Model Pressure drop mm WC			
APH outlet to ESP Inlet	43.4	20.5			
ESP outlet to ID fan Inlet	17.3	10.0			

* Net Pressure Drop across the system : <u>30mmWC</u> in Modified Model.

DUCT TESTING PRE INSTALLATION

DUCT TESTING POST INSTALLATION

			I	Me	asurement	t of Veloci	ity of F	lue Gas In	Duct	נ			
Client J	indal Pow	er Ltd U-3			Date of Te	st: 24.02.201	4]	_	Duct Loca	ation - API	H Outlet A	A Pass
Unit Load	l : 250 MW					E	ID A ID B	141 AMP. 143 AMP.	Damper Po Damper P	osition ID A osition ID B		FD A FD B	32.5 AMP 32.6 AMP
									Sco	op position			
Static Pres	ssure (Ps)-r	mmWc	-197.40	l.	Pitot Tube	Constant	0.9			Duct Dim	ensions - 3	3530 X 884	.0
Barometri	c Pre. (Ba)	-mmHg	760	1		T							
Abs.Press	ure (Pu)-n	unWc	745.49		Temperate	ure(tu) ⁰ C	132			Density (I	Do) = 1.3 k	cg/Nm3	/
Pu=Ba+Pa	3/13.6		745.49	l i	Temperate	ure(Tu) ⁰ K	405			$Du = Do^*($	(Pu/760)*((273/Tu)	0.8596
T		Dyna	mic Pressur	e = Pd m	umWC			Velocity (Vu) = 4.4*J	K*Sq.rt.(Pd/	/Du)		
		Transit	point no./di	istance fr	om end								
Port No.	1	2	3	4	5		1	2	3	4	5		Avg. Vel. m/sec
1	13.2	3.6	56	6.6	0.8	┢───╁	15.5	81	10.1	11.0	37	┣───	9.65
2	13.5	5.8	3.0	6.9	5.6		15.7	10.3	7.5	11.2	10.1		10.95
3	9.9	13	28	4.6	8.9		13.4	4.8	71	91	12.7		9.45
4	11.7	2.0	2.3	0.8	8.9		14.6	61	6.5	3.7	12.7		8.72
5	5.8	3.3	3.0	2.0	5.1	F	10.3	7.8	7.5	6.1	9.6		8.25
F	Av. Pd =	5.48	1					Av. Vel. (1	m/sec) =	10.00	ـــــــــــــــــــــــــــــــــــــ		

To,

M/s. Mech-Well Industries Ltd Malay, Plot No.607/201, Anand C.H.S,Motawni Road, Nasik Road,Nasik-422101, Ph:0253-2453556, Email Id : nasik@mechwell.org Kind attn : Mr. Mehul Shah, Head CAE-Business Development.

Dear Sir,

Reference is made to our Work order nos. 1. Order No : 4400005556 CFD Analysis (4x250 MW) and duct test Dt.17.08.2013 2. Order No : 4100007559 Supply of Diverter plates for Duct Dt.07.11.2013 3. Order No : 4400006000 Work of Erection of Diverter Plates Dt. 07.11.2013

Subject: CFD ANALYSIS FROM APH OUTLET TO ID FAN INLET.

In reference to aforesaid subject we wish to appreciate and acknowledge the successful completion of project in Unit-3 of 4 x 250 MW Jindal Power Ltd, Tamnar for the above mentioned work orders.

Parameters	Before CFD Analysis	After Implementation of CFD Analysis	Result after 15 month continuous running		
Load (MW)	248 MW	250MW	250MW		
ID FAN-A	191Amp	141 Amp	148 Amp		
ID FAN-B	196Amp	143 Amp	149 Amp		

Your technical approach was very effective and the whole job was carried out in a systematic manner in stipulated time frame of 15 days of annual shutdown of unit-3 Our best wishes for their future endeavours.

Thanking you,

Yours faithfully,

(Rafique Ahmed) AVP

Jindal Power Ltd Registered Office Tamnar 496 107, District Reigerh, Chhettisgerh T +91 7767 281701 F +91 7767 281995 W www.jindalpower.com

PERFORMANCE CERTIFICATE

15

CFD Analysis of Combustion Air Ducting of NHT Heaters for flow *distribution in burners*

CFD Results for140-F001 Duct_Case-I

CASE I

Flow Rate:15350 Kg/hr at Temp. 9 C & Pressure at Each burner inlet: 39 mmWC

Pressure Contour Plot in Plenum duct(At the center plane of Plenum Duct)

Pressure Contour Plot in Plenum duct(At the center of plane of Plenum Duct) with user specified values

CFD Analysis of Flow in CA Ducting of Coker New Feed Pre-Heater

CFD analysis for EDC Cracker Furnace duct

Elevation

Side View

Mesh

Detailed Velocity plot at various location

MECHWELL

VELOCITY STREMLINES INSIDE COMBUSTION AIR DUCT – DESIGN CASE

Velocity Streamline 27.9

21.0

14.1

7.2

0.3 [m s^-1]

CFD REULTS FOR Minimum Case

CFD Results

Velocity contour

Velocity Pattern

Velocity (Plane 1)

50.000

41.667

33.333

25.000

16.667

8.333

0.000

[m s^-1]

CFD Results after adding heat source

Temperature contour

Velocity and temperature Contour

Velocity contour

Velocity profile is extracted from the 3D simulation and used in case of 2D analysis for 15 modification. Fuel Flow : 0.088839 Kg/s

Air Flow : 0.227579 Kg/s

Temperature contour

Fuel Flow : 0.029613 Kg/s

Air Flow : 0.227579 Kg/s

Air Inlet Temp: 464 deg

Velocity profile is extracted from the 3D simulation and used in case of 2D analysis for 15 modification.

OBJECTIVE

Objective of the project are as follows:

➤Turbulence which will been minimized by avoiding flow separation and recirculation using CFD technique

➤Supply of correct quantity of secondary air to each burner to be ensured and Reduce Pressure drop across APH to wind box (ducting's) as compare to existing system which will result in reducing /maintaining wind box pressure to improve power saving of FD fan.

➤The simulation domain to focus on equating high velocity zones to achieve uniform stratification and reduction in pressure drop and turbulence caused by uneven air flow distribution Detailed flow modeling for air/fuel and mixtures

3D MODEL

EXISTING 3D MODEL

CFD RESULTS

EXISTING

From Velocity plot, it can be observed velocity is concentrated at the centre of the plane because of sharp corners to the duct

MODIFIED

From Velocity plot, it can be observed flow is more uniform & after design of fillets

CFD RESULTS

By Design the GD Screens , Modified Inlet Duct , Baffles, the Flow become Uniform near to burners and Inlet.

MODIFIED

36

CFD RESULTS

CFD for Oil & Gas Separation

Three–Phase Separation (Oil-Gas-Water)

`CFD Analysis for Oil & Gas Separation

Two Phase Separation with and without porous domains at various Time Steps (Transient Analysis)

CFD Analysis can also increase the life span of a flare system by reducing the flare.

CFD Analysis for Flare Systems include:

- → Knockout Drums
 - → Liquid Seal Drums
 - → Flare Stack

CFD IN CFBC BOILERS

CFBC BOILER- CFD MODEL

CFBC BOILER

CFBC BOILER-SIMULATION & COMBUSTION ANALYSIS

EXISTING SIMULATION RESULTS

PA AIR VELOCITY FROM NOZZLES

EXISTING SIMULATION RESULTS

EXISTING SIMULATION RESULTS

FLUIDIZATION VELOCITY AT THE PLANES AT DIFFERENT ELEVATION

≻ CFD Analysis of Fluidization has been Carried out for the Existing Case.

➢ It can be observed that near rear wall at the center of furnace at 10 to 11.5 m height ,Gas velocity as well as material velocity is higher which is cause of the erosion

➤ The un- equal flow through the SA Ports affecting on the fluidization velocity in the furnace & causing the erosion of the front or rear wall.

The flow from SA ports to be distributed such that good fluidization velocity should be maintained through out the furnace. The required flow from SA ports can be derived from the CFD Analysis.

➢ Flow separation has been observed at the cyclone Outlet Duct & very less flow near the bottom wall of the duct which is causing the material deposition

THESE CUSTOMERS TRUST US

HPGCL

JIND

POWER

Thermal Power Stations

adani

LANCO

Creating tomorrow today

THANK-YOU !!!

Akshay Shah CAE – R&D Center for Innovation , Nasik Contact Details:-8275016434 / 9881080433 Mail id:- <u>akshay@mechwell.org</u> , <u>nasik@mechwell.com</u>